大脑必须不断在大量外界感觉刺激之间进行选择,以便专注并处理其中少数一些刺激。“内侧颞叶”(MTL)中的神经元对特定视觉目标有选择性响应,它们的活动已知由认知效应调控。
Cerf等人构建了一个新的大脑-机器接口,在该接口中,当观看叠加的电脑图像的神经外科手术患者被要求让一个图像渐现或渐隐时,迅速学会了调控他们位于不同子区域和不同半球的MTL神经元的神经活动,从而增加某些细胞的激发速度,同时降低其他细胞的激发速度,并控制组合图像的内容。
这项工作提供了人类可以控制他们自己大脑内的视觉神经元的神经活动、而且这种活动还可以被解码来控制设备的直接证据。希望这样的接口装置今后有一天将能帮助有各种各样神经损伤(如“闭锁综合征”或运动神经元疾病)的患者进行沟通。(生物谷Bioon.com)
生物谷推荐英文摘要:
Nature doi:10.1038/nature09510
On-line, voluntary control of human temporal lobe neurons
Moran Cerf,Nikhil Thiruvengadam,Florian Mormann,moran@klab.caltech.eduAlexander Kraskov,Rodrigo Quian Quiroga,Christof Kochkoch@klab.caltech.edu& Itzhak Friedifried@mednet.ucla.edu
Daily life continually confronts us with an exuberance of external, sensory stimuli competing with a rich stream of internal deliberations, plans and ruminations. The brain must select one or more of these for further processing. How this competition is resolved across multiple sensory and cognitive regions is not known; nor is it clear how internal thoughts and attention regulate this competition1, 2, 3, 4. Recording from single neurons in patients implanted with intracranial electrodes for clinical reasons5, 6, 7, 8, 9, here we demonstrate that humans can regulate the activity of their neurons in the medial temporal lobe (MTL) to alter the outcome of the contest between external images and their internal representation. Subjects looked at a hybrid superposition of two images representing familiar individuals, landmarks, objects or animals and had to enhance one image at the expense of the other, competing one. Simultaneously, the spiking activity of their MTL neurons in different subregions and hemispheres was decoded in real time to control the content of the hybrid. Subjects reliably regulated, often on the first trial, the firing rate of their neurons, increasing the rate of some while simultaneously decreasing the rate of others. They did so by focusing onto one image, which gradually became clearer on the computer screen in front of their eyes, and thereby overriding sensory input. On the basis of the firing of these MTL neurons, the dynamics of the competition between visual images in the subject’s mind was visualized on an external display.