大脑会过滤掉不想要的噪音,就像电视遥控器上的消音按钮,让人们集中于正在听的声音。但如果是我们自己说话的声音呢?据《每日科学》网站近日报道,美国加利福尼亚大学伯克利分校的一项新研究显示,大脑中有一个音量设置网络,能选择性把我们自己说话的声音和听到的声音调大调小。研究发表在近期《神经科学杂志》 Journal of Neuroscience 上。
加州大学伯克利分校(UCSF)神经科学家和约翰·霍普金斯大学合作,追踪研究了一些癫痫病患者大脑活动,由于治疗需要,病人的脑皮质中已经植入了电极来追踪发病位点。研究人员检测了病人健康大脑组织中的电信号。
研究人员指导病人复述听到的单词和字母,并记录下他们的活动,对他们在说和听过程中电信号的释放活动进行了对比。结果发现,病人在说话时,其大脑中联系听力机制的那部分神经元是昏暗的,而其他神经元却是明亮的,听觉皮质区显出更少的活动,而不讲话时则显出同样的或更高的活动水平。
以往的研究显示,在猴子大脑中有一个可选择的听觉系统,能放大它们自己发出的各种声音,如发现食物和警告危险。但尚不清楚人类听觉系统是如何连通的。
“我们发现,每次听到声音时,数百万的神经元每次一起点亮,紧接着数百万的神经元就不再理会外部声音,只有当每次你说话时候才又一起点亮。”论文主要作者、UCSF神经科学系博士生阿迪安·弗林克说,“我们所以能区分自己和他人的讲话,这种马赛克般的反应机制起着重要作用。”
过去认为,在讲话过程中,人类的听觉系统大部分是被压抑的。这次新研究发现了两块紧连在一起的皮层,位置仅隔几毫米的脑细胞亚区,承担不同的音量控制职能,对自己讲话有着截然不同的敏感性。而这种敏感性有助于区分自己和他人声音,以确保准确表达自己的意思。
根据弗林克的理论,追踪自己的讲话对于语言发展更加重要,以便监控自己所说的内容,控制环境噪音的变化。“无论是学习一种新语言,还是跟朋友在嘈杂的吧厅交谈,我们需要听到自己在说什么,并根据需要和外界环境随时做出调整。”
弗林克还指出,精神分裂的人不能区分自己的声音和他人的声音,可能就是因为他们缺乏这种听觉选择机制。这一发现还有助于更好地理解幻听现象。(生物谷Bioon.com)
生物谷推荐原文出处:
Journal of Neuroscience DOI: 10.1523/JNEUROSCI.1809-10.2010
Single-Trial Speech Suppression of Auditory Cortex Activity in Humans
Adeen Flinker,1 Edward F. Chang,3 Heidi E. Kirsch,4 Nicholas M. Barbaro,3 Nathan E. Crone,5 and Robert T. Knight1,2,3,4
1Helen Wills Neuroscience Institute and 2Department of Psychology, University of California, Berkeley, California 94720, 3Departments of Neurosurgery and 4Neurology, University of California, San Francisco, California 94143, and 5Department of Neurology, The Johns Hopkins University, Baltimore, Maryland 21205
Correspondence should be addressed to Adeen Flinker, Helen Wills Neuroscience Institute, University of California, Berkeley, 132 Barker Hall, Berkeley, CA 94720- 3190. Email: adeen.f@gmail.com
The human auditory cortex is engaged in monitoring the speech of interlocutors as well as self-generated speech. During vocalization, auditory cortex activity is reported to be suppressed, an effect often attributed to the influence of an efference copy from motor cortex. Single-unit studies in non-human primates have demonstrated a rich dynamic range of single-trial auditory responses to self-speech consisting of suppressed, nonsuppressed and excited auditory neurons. However, human research using noninvasive methods has only reported suppression of averaged auditory cortex responses to self-generated speech. We addressed this discrepancy by recording electrocorticographic activity from neurosurgical subjects performing auditory repetition tasks. We observed that the degree of suppression varied across different regions of auditory cortex, revealing a variety of suppressed and nonsuppressed responses during vocalization. Importantly, single-trial high-gamma power (High, 70–150 Hz) robustly tracked individual auditory events and exhibited stable responses across trials for suppressed and nonsuppressed regions.