2007年,哈佛大学的科学家曾利用荧光蛋白成像技术制作出实验鼠的神经结构图。据美国《大众科学》网站2月27日报道,美国研究学者对这一技术进行了更多的改进,并描绘出果蝇的神经网络,公布的图片相当漂亮。
通过激活神经元中的复合荧光蛋白,科学家们能够绘制出神经网络图,以研究生物的大脑究竟是怎样工作的。美国果蝇学者使用的这种叫做“双重大脑彩虹”的技术要比之前的方法更为直观,它是用更多的颜色对果蝇的神经网络进行标记和描绘。
相关研究成果已经公布在上周的《自然方法》杂志上。从照片上来看,果蝇大脑横断面上方的很多神经元都显示得非常清晰。科学家们已经能够通过“修改”果蝇的基因来进行更精准的着色标记,这对研究神经元之间究竟如何“通讯”以及未来破解人类大脑的秘密将起到非常关键的作用。(生物谷Bioon.com)
生物谷推荐相关文章:
Nature Methods doi:10.1038/nmeth.1566
Drosophila Brainbow: a recombinase-based fluorescence labeling technique to subdivide neural expression patterns
Stefanie Hampel,1, 2 Phuong Chung,1, 2 Claire E McKellar,1 Donald Hall,1 Loren L Looger1 & Julie H Simpson1
We developed a multicolor neuron labeling technique in Drosophila melanogaster that combines the power to specifically target different neural populations with the label diversity provided by stochastic color choice. This adaptation of vertebrate Brainbow uses recombination to select one of three epitope-tagged proteins detectable by immunofluorescence. Two copies of this construct yield six bright, separable colors. We used Drosophila Brainbow to study the innervation patterns of multiple antennal lobe projection neuron lineages in the same preparation and to observe the relative trajectories of individual aminergic neurons. Nerve bundles, and even individual neurites hundreds of micrometers long, can be followed with definitive color labeling. We traced motor neurons in the subesophageal ganglion and correlated them to neuromuscular junctions to identify their specific proboscis muscle targets. The ability to independently visualize multiple lineage or neuron projections in the same preparation greatly advances the goal of mapping how neurons connect into circuits.