综合国外媒体8月31日报道,美国普林斯顿大学的一组研究人员发现,人类大脑在思考抽象概念和思考与该概念相关的具体事物时所产生的活动图相似。该研究成果有助于了解人类在阅读或者思考时大脑处理复杂概念的方式,也可以通过大脑活动图像推测出一个人当时正在思考的内容。
该项目的研究人员近日在《人类神经科学前沿》(Frontiers in Human Neuroscience)期刊上公布了上述结论。他们通过功能性磁振造影(fMRI)的方法,来确定受试者在想到胡萝卜、马和房子等具体物体时大脑的活动情况,随后又试验了一系列与这些物体相关的主题,发现同一个主题内的词语引发的大脑活动图像相似。例如,当一个人在思考“家具”这一抽象概念时,他的大脑活动图与思考“饭桌”、“办公桌”和“椅子”等实物时产生的图像相似。
与上述过程相反的实验则表明,如果受试者的大脑活动情况与他在思考某个抽象概念时的类似,那么他一定在思考与这一抽象概念相关的具体事务。
普林斯顿大学心理系副教授、高级研究员马修?博特温尼克指出:“无论人类思考的主题是什么,包括各种抽象概念、情感、计划以及与社会有关的想法等,最终都会在大脑中以特定的活动形式反映出来。”博特温尼克同时也是普林斯顿大学神经科学研究所研究员。
据介绍,该项目的最终目标是弄清大脑的全部活动情况,并用“恰当的文字将其记录下来”。(生物谷 Bioon.com)
doi:10.3389/fnhum.2011.00072
PMC:
PMID:
Generating text from functional brain images
Francisco Pereira, Greg Detre,and Matthew Botvinick
Recent work has shown that it is possible to take brain images acquired during viewing of a scene and reconstruct an approximation of the scene from those images. Here we show that it is also possible to generate text about the mental content reflected in brain images. We began with images collected as participants read names of concrete items (e.g., “Apartment’’) while also seeing line drawings of the item named. We built a model of the mental semantic representation of concrete concepts from text data and learned to map aspects of such representation to patterns of activation in the corresponding brain image. In order to validate this mapping, without accessing information about the items viewed for left-out individual brain images, we were able to generate from each one a collection of semantically pertinent words (e.g., “door,” “window” for “Apartment’’). Furthermore, we show that the ability to generate such words allows us to perform a classification task and thus validate our method quantitatively.