近日,中科院心理研究所特聘研究员左西年等人在PLoS One期刊上发表了他们最新研究结果"Resting-State Brain Organization Revealed by Functional Covariance Networks",在这项研究中,左西年与国内合作单位(南京军区总医院和电子科技大学)尝试提出利用脑内自发低频波动活动的振幅在个体间的差异来构建不同脑区的功能关联,提出功能协方差网络方法。
人们的生理和心理个体差异潜含非常重要的生物进化及多样性信息。在脑成像研究领域,以往关于脑结构(比如:灰质体积、密度和皮层厚度)的研究已经注意到这种个体差异对于揭示人脑结构组织的方式颇具启发性。但是,认知科学家研究具体认知任务时大都将个体差异视为干扰因素而不予重视。新近逐步受到重视、不依赖于具体任务设计的成像技术——静息态脑成像,则给予研究人员新的机会来考察这种个体差异在大脑内在功能架构上的表现。目前,利用功能磁共振成像时间序列(秒尺度)和脑结构测量协方差(年尺度)的网络方法已经分别在不同的时间尺度描绘了人脑功能和结构组织。但是,研究人员尚未对介于前两种尺度之间的人脑的功能网络架构进行刻画。
研究人员通过研究默认网络、注意网络和感觉网络图谱,比较其与以前两种不同时间尺度网络方法的特点。实验结果发现,这三种不同尺度的网络有很大程度的空间重叠,并且两种较短时间尺度的功能网络具有更明显的模块化性质。最令人感兴趣的是,网络分析表明,功能协方差网络是由反相的高阶认知系统和低阶感知系统所组成的“二分”网络(如图),这是继时间序列相关方法发现人脑具有反相的默认网络和注意网络之后的又一新观测。
该研究得到了国家自然科学基金委(30800264,30971019,81020108022)和金陵医院青年基金(Q2008063,Q2011060)的资助。(生物谷Bioon.com)
doi:10.1371/journal.pone.0028817
PMC:
PMID:
Resting-State Brain Organization Revealed by Functional Covariance Networks
Zhiqiang Zhang1#, Wei Liao2#, Xi-Nian Zuo3,4#, Zhengge Wang1, Cuiping Yuan1, Qing Jiao1, Huafu Chen2, Bharat B. Biswal5, Guangming Lu1*, Yijun Liu6
Background
Brain network studies using techniques of intrinsic connectivity network based on fMRI time series (TS-ICN) and structural covariance network (SCN) have mapped out functional and structural organization of human brain at respective time scales. However, there lacks a meso-time-scale network to bridge the ICN and SCN and get insights of brain functional organization.
Methodology and Principal Findings
We proposed a functional covariance network (FCN) method by measuring the covariance of amplitude of low-frequency fluctuations (ALFF) in BOLD signals across subjects, and compared the patterns of ALFF-FCNs with the TS-ICNs and SCNs by mapping the brain networks of default network, task-positive network and sensory networks. We demonstrated large overlap among FCNs, ICNs and SCNs and modular nature in FCNs and ICNs by using conjunctional analysis. Most interestingly, FCN analysis showed a network dichotomy consisting of anti-correlated high-level cognitive system and low-level perceptive system, which is a novel finding different from the ICN dichotomy consisting of the default-mode network and the task-positive network.
Conclusion
The current study proposed an ALFF-FCN approach to measure the interregional correlation of brain activity responding to short periods of state, and revealed novel organization patterns of resting-state brain activity from an intermediate time scale.