氧气和葡萄糖是大脑的食物,如果缺少它们(例如中风期间),神经细胞将会死亡。一个由柏林夏洛蒂医科大学和加拿大麦克马斯特大学组成的国际研究小组发现了一种防止细胞死亡的新机制。研究结果发表于《美国国家科学院报》(PNAS)上。
短暂的缺氧可以作为对人体细胞的一个培训。结果,它们在更长时间的缺氧情况下能生存的更好--可以这么说,它们已经"准备好了"。此外,现在已经知道氧气不足也影响着糖代谢。然而,到目前为止,糖代谢和细胞程序性死亡一直被视为相互独立的事件。
在夏洛蒂医科大学NeuroCure一起工作的2位科学家Philipp Mergenthaler和Andreas Meisel领导的研究小组现在解释了这两个过程之间的联系。(备注:NeuroCure是夏洛蒂医科大学成立的一个跨学科研究联盟,致力于神经科学研究,由德国联邦和州政府资助。)
细胞的存活由糖代谢中的一个关键酶(即所谓的己糖激酶-2,hexokinase-2)调控,这种酶以一种细胞可处理的方式改变了葡萄糖。研究人员发现,在大脑缺氧的神经细胞中己糖激酶-2被激活了。当人中风(一种脑部血液循环障碍)时便会出现这种情况,结果导致大脑氧气和养分供应不足,己糖激酶-2随后发挥了一种保护作用。"这种神经细胞的自我保护作用呈现了一个重要的基础机制,对这个机制进行深入研究可能开发出一些优化的中风疗法,"Meisel说。
然而,缺氧和细胞代谢改变的分子机制不仅在中风中发挥作用,在肿瘤的发展和免疫系统对抗感染的防御中同样非常重要。相应地,这种酶在恶性肿瘤中负责糖代谢的改变。可是,如果在葡萄糖供应不足而氧供应正常,也能够导致细胞的死亡。"了解糖代谢是如何调节细胞死亡的基础机制从而可能被用来防治中风,也可用于选择性地引起恶性肿瘤细胞的死亡,"Mergenthaler解释道。糖代谢调节细胞死亡的机制从根本上扩大了许多疾病的基本医疗知识。(生物谷bioon.com)
doi:10.1073/pnas.1108225109
PMC:
PMID:
Mitochondrial hexokinase II (HKII) and phosphoprotein enriched in astrocytes (PEA15) form a molecular switch governing cellular fate depending on the metabolic state
P. Mergenthaler, A. Kahl, A. Kamitz, V. van Laak, K. Stohlmann, S. Thomsen, H. Klawitter, I. Przesdzing, L. Neeb, D. Freyer, J. Priller, T. J. Collins, D. Megow, U. Dirnagl, D. W. Andrews, A. Meisel
Abstract:The metabolic state of a cell is a key determinant in the decision to live and proliferate or to die. Consequently, balanced energy metabolism and the regulation of apoptosis are critical for the development and maintenance of differentiated organisms. Hypoxia occurs physiologically during development or exercise and pathologically in vascular disease, tumorigenesis, and inflammation, interfering with homeostatic metabolism. Here, we show that the hypoxia-inducible factor (HIF)-1–regulated glycolytic enzyme hexokinase II (HKII) acts as a molecular switch that determines cellular fate by regulating both cytoprotection and induction of apoptosis based on the metabolic state. We provide evidence for a direct molecular interactor of HKII and show that, together with phosphoprotein enriched in astrocytes (PEA15), HKII inhibits apoptosis after hypoxia. In contrast, HKII accelerates apoptosis in the absence of PEA15 and under glucose deprivation. HKII both protects cells from death during hypoxia and functions as a sensor of glucose availability during normoxia, inducing apoptosis in response to glucose depletion. Thus, HKII-mediated apoptosis may represent an evolutionarily conserved altruistic mechanism to eliminate cells during metabolic stress to the advantage of a multicellular organism.