如果你是一个老年婴儿潮,你或许已经注意到自己在某些方面的困难,比如开车到陌生的地点或在超市挑选新品牌的橄榄油,你可以认为你大脑中的脑白质负主要责任。
一项有关大脑图谱的最新研究发表在4月11日的Journal of Neuroscience杂志上,研究人员发现人在新的环境下做决定的能力,随着年龄的增长而减弱,并其这一减弱与连接大脑皮层中称为内侧前额叶皮质区域与大脑深处其他两块区域的两条特定的白质通路的完整性有关。
灰质是大脑的一部分,脑、脊髓内神经元集中的地方,色泽灰暗,所以称为灰质。灰质内功能相同的神经细胞体集合一起称为神经核。在过去,大多数脑成像的研究集中于灰质。然而最近,神经学家已经开始更多关注白质研究。白质链接与大脑的处理速度和注意力等有关,这项研究是首次探讨了学习和决策与脑白质之间的联系。
大脑扫描图
影像科学范德比尔特的心理学系和研究所博士后研究员Gregory R. Samanez-Larkin说:决策能力的下降与白质的完整性的证据表明,有可能将来会有有效的方式介入这一过程。一些研究表明白质的连接可以通过加强认知训练等具体形式来提高。
这项研究涉及了25名从21到85岁不等的成年人。他们被要求完成货币政策的学习任务,任务的目的是引发这些人心理学家所说的概率性奖励学习。Samanez-Larkin说:根据以往的经验和结果的不确定性,每当我们尝试选择最佳替代决定是,我们都是靠概率性奖励性学习来实现的。
在同一天,研究人员利用磁共振成像技术对参与者的大脑进行扫描。实验发现丘脑中关键性白质连接存在于与决策有关的大脑区域(内侧前额叶皮质)、与情绪和动机方面有关的内侧前额叶皮层腹侧纹状体。(生物谷:Bioon.com)
doi:10.1523/JNEUROSCI.5756-11.2012
PMC:
PMID:
Frontostriatal White Matter Integrity Mediates Adult Age Differences in Probabilistic Reward Learning
Gregory R. Samanez-Larkin, Sara M. Levens, Lee M. Perry, Robert F. Dougherty, and Brian Knutson
Frontostriatal circuits have been implicated in reward learning, and emerging findings suggest that frontal white matter structural integrity and probabilistic reward learning are reduced in older age. This cross-sectional study examined whether age differences in frontostriatal white matter integrity could account for age differences in reward learning in a community life span sample of human adults. By combining diffusion tensor imaging with a probabilistic reward learning task, we found that older age was associated with decreased reward learning and decreased white matter integrity in specific pathways running from the thalamus to the medial prefrontal cortex and from the medial prefrontal cortex to the ventral striatum. Further, white matter integrity in these thalamocorticostriatal paths could statistically account for age differences in learning. These findings suggest that the integrity of frontostriatal white matter pathways critically supports reward learning. The findings also raise the possibility that interventions that bolster frontostriatal integrity might improve reward learning and decision making.