美国杜克大学医学中心研究人员发现了两种强力抗体——2F5和4E10阻断艾滋病病毒(HIV)感染的机制。该发现为研制新的、更有效的艾滋病疫苗指出了一个新方向。相关研究刊发在《美国国家科学院院刊》上。
美国杜克大学医学中心人类疫苗研究所的S·穆尼尔·阿拉姆博士和哈佛医学院的儿科助理教授陈兵(音译)博士一起,对两种对抗HIV的潜在强力抗体——2F5和4E10进行了研究。这两种抗体十分罕见,属于广效性中和抗体,它们能够阻断若干不同的HIV毒株。HIV有其致命的薄弱之处,即所谓的病毒外层包膜近侧区。在这一区域靠近病毒包膜的一部分外蛋白质层,会在细胞融合和感染过程中短暂开放,从而使病毒有几分钟的时间暴露在抗体面前。而这两种抗体正是利用这个机会与病毒绑定,从而阻断HIV。
但要控制病毒感染,还面临着这样的问题:在艾滋病病毒感染者中,这两种抗体十分罕见,而目前的试验性疫苗还不能产生这些抗体。此外,这类抗体的“机会之窗”也十分狭窄。
“病毒目标区域只开放几分钟——也许只有15分钟甚至更短。”阿拉姆博士说,“除非抗体与目标十分接近,并做好了准备,否则就不会起作用。这意味着我们要设计出新型疫苗,可诱导更多的这类抗体,让它们在感染的最初阶段即投入战斗。”
2F5和4E10都具有很长的、一圈一圈的蛋白质片段,这些片段具有疏水性,这意味着它们容易被脂质吸引。研究人员发现,抗体要成功对接到HIV的外膜区域,有赖于抗体可依附在HIV外层类脂包膜上,而这些包膜中就含有脂质。
该研究团队已开始设计一种含有脂质成分的疫苗。该论文的合著者、人类疫苗研究所主任巴顿·海恩斯指出,在这些中和抗体的所有功能中,病毒粒子脂质反应性作用给他们的研究提供了一个关键性切入点,即免疫系统需要看到什么才会产生这类抗体。他们基于这些发现而设计出的新型疫苗,目前已开始进行动物试验。(生物谷Bioon.com)
生物谷推荐原始出处:
PNAS November 11, 2009, doi: 10.1073/pnas.0908713106
Role of HIV membrane in neutralization by two broadly neutralizing antibodies
S. Munir Alama,1,2, Marco Morellib,c,1, S. Moses Dennisona, Hua-Xin Liaoa, Ruijun Zhanga, Shi-Mao Xiaa, Sophia Rits-Vollochb,d, Li Sune, Stephen C. Harrisona,d,f, Barton F. Haynesa and Bing Chenb,f,2
aHuman Vaccine Institute, Duke University School of Medicine, Durham, NC 27710;
bLaboratory of Molecular Medicine, Children's Hospital,
dHoward Hughes Medical Institute, and
fDepartment of Pediatrics, Harvard Medical School, 320 Longwood Avenue, Boston, MA 02115;
cProgram in Virology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115; and
eXiamen Amoytop Biotech Company, Ltd., 330 Wengjiao Road, Xiamen, Fujian, China 361022
Induction of effective antibody responses against HIV-1 infection remains an elusive goal for vaccine development. Progress may require in-depth understanding of the molecular mechanisms of neutralization by monoclonal antibodies. We have analyzed the molecular actions of two rare, broadly neutralizing, human monoclonal antibodies, 4E10 and 2F5, which target the transiently exposed epitopes in the membrane proximal external region (MPER) of HIV-1 gp41 envelope during viral entry. Both have long CDR H3 loops with a hydrophobic surface facing away from the peptide epitope. We find that the hydrophobic residues of 4E10 mediate a reversible attachment to the viral membrane and that they are essential for neutralization, but not for interaction with gp41. We propose that these antibodies associate with the viral membrane in a required first step and are thereby poised to capture the transient gp41 fusion intermediate. These results bear directly on strategies for rational design of HIV-1 envelope immunogens.