生物谷 讯 斯坦福大学的研究人员使用一种新技术观察单一细胞在细胞信号复杂系统中的应答反应,首次发现相同细胞之间存在大范围的差异。他们的这项研究结果发布在6月27日Nature的在线版本上。这项研究的负责人是生物工程学助理教授Markus Covert。
到目前为止,大部分关于细胞信号的信息是通过整体分析方法观察细胞群获得的。由于技术上的限制科学家不能观察单独的细胞。该研究使用了一种基于微流体的成像系统,结果表明科学家的一些认识可能已经被基于细胞群体研究的结果所误导。
研究人员表示,细胞活化这一结果是一样的,然而细胞达到结果的过程可能是不一样的,群体研究不能显示信息错综复杂的信号网络中的差异,而这在单一细胞水平中可以观察到。
提示:生物谷启用新域名 www.bioon.net
细胞信号交流调控着基本的细胞活性以及人体中相应的细胞活动。细胞准确应答周围环境的能力是发育,组织修复和免疫的基础。深入理解细胞间的相互交流将有助于了解生物系统的复杂性,或能开发出癌症,糖尿病及其他自身免疫疾病的新疗法。
为了研究单独细胞在细胞信号传导过程中的反应,Covert和Stephen Quake教授的实验室进行了联合研究。三年前,曾有研究人员在Quake的实验室中开发出了一种微流体芯片技术针对性地用于单一细胞的研究。在这项研究中,他们就是使用微流体芯片技术观察炎症细胞的反应,也是该技术在生物学上的一个巧妙应用。
在这项研究中,研究人员用不同的蛋白浓缩物刺激细胞,这些浓缩物是免疫系统应答炎症或癌症反应的代表性物质。结果发现,一些细胞接受信号并被激活,而一些细胞则没有激活。在图像中,科研人员观察到细胞以不同的方式产生应答,但是细胞的基本反应在许多方面是一致的。(生物谷www.bioon.net)
了解更多
Science Signaling:细胞信号传导通路最优新模型
Nature子刊:超魅力小珠调控细胞信号
T-Cell Activation Using mAb to CD3
抗RSV感染研究聚焦免疫应答
JCI:人体对HIV-2病毒的免疫应答有助艾滋病疫苗研发
生物谷推荐原文出处:
Nature doi:10.1038/nature09145
Single-cell NF-κB dynamics reveal digital activation and analogue information processing
Sava? Tay1,2,4, Jacob J. Hughey1,4, Timothy K. Lee1, Tomasz Lipniacki3, Stephen R. Quake1,2 & Markus W. Covert1
Department of Bioengineering, Stanford University, Stanford, California 94305, USA
Howard Hughes Medical Institute, Stanford, California 94305, USA
Institute of Fundamental Technological Research, Warsaw 02-106, Poland
Cells operate in dynamic environments using extraordinary communication capabilities that emerge from the interactions of genetic circuitry. The mammalian immune response is a striking example of the coordination of different cell types1. Cell-to-cell communication is primarily mediated by signalling molecules that form spatiotemporal concentration gradients, requiring cells to respond to a wide range of signal intensities2. Here we use high-throughput microfluidic cell culture3 and fluorescence microscopy, quantitative gene expression analysis and mathematical modelling to investigate how single mammalian cells respond to different concentrations of the signalling molecule tumour-necrosis factor (TNF)-α, and relay information to the gene expression programs by means of the transcription factor nuclear factor (NF)-κB. We measured NF-κB activity in thousands of live cells under TNF-α doses covering four orders of magnitude. We find, in contrast to population-level studies with bulk assays2, that the activation is heterogeneous and is a digital process at the single-cell level with fewer cells responding at lower doses. Cells also encode a subtle set of analogue parameters to modulate the outcome; these parameters include NF-κB peak intensity, response time and number of oscillations. We developed a stochastic mathematical model that reproduces both the digital and analogue dynamics as well as most gene expression profiles at all measured conditions, constituting a broadly applicable model for TNF-α-induced NF-κB signalling in various types of cells. These results highlight the value of high-throughput quantitative measurements with single-cell resolution in understanding how biological systems operate.