海洋在全球碳循环中起着极为重要的作用,能够吸收大约一半由人类活动产生的温室气体,而其中大部分的反应都发生在海洋表面以下100米的区域之内。海洋中多种浮游植物能够通过光合作用捕获碳,而当它们死后,会穿过海洋的“昏暗带”(twilight zone)沉至永远漆黑的海底。然而,美国科学家进行的一项最新研究表明,海洋“昏暗带”的生物活动实际上是碳沉积的“把关人”,决定着浮游植物捕获的碳被永远存储于海底,还是很快又再回到海洋表层。4月27日的《科学》杂志以封面文章的形式发表了这一研究成果。
在2004年和2005年,美国马萨诸塞州Woods Hole海洋研究所的生物地球化学家Ken Buesseler领导的一支科学家小组对太平洋两个区域的“昏暗带”进行了研究,分别是美国的夏威夷和俄罗斯的堪察加半岛(Kamchatka Peninsula)。利用随着海流飘移的新型传感器,研究人员对浮游生物进行了取样,并测定了沉降至深海以及循环回海洋表层的生物固碳总量,从而对海洋真正的碳沉积能力作出了估计。
这两次研究所得到的碳沉积数据结论是一致的:在堪察加半岛海域,较冷的水温和更多的营养物质促进了包括浮游植物、珊瑚等在内的海洋生态系统的繁荣,因此,有大约50%捕获的碳穿过“昏暗带”沉入海底。相比而言,夏威夷温和的海水则有利于更小的浮游动物的发展,因此,只有20%的碳真正得到沉积。Buesseler表示,深度一旦超过1000米,这些碳再回到浅海的可能性就不大了,那里的海水几个世纪甚至数千年都不会‘再见天日’。
Buesseler解释说,深海储碳的变化往往不是由海洋表层控制,而是受“昏暗带”变化的影响。它的作用就好比是能够使碳转移到深海的“大门”,海洋储碳的能力与“昏暗带”的微生物活动紧密相关。
海洋的碳捕获量通常由20世纪90年代提出的马丁曲线(Martin curve)来确定,它包含的一系列数据能够说明海洋碳捕获量随着深度增加的变化。不过,Buesseler表示,根据最新研究结果,马丁曲线低估了堪察加半岛海域50%的碳沉积能力,但将夏威夷海域高估了一倍。他说,“马丁曲线很好地表达了平均水平,但不能描述海洋储碳的系统动力学。”
该研究小组已经改进了他们的传感器,并打算继续对北大西洋的百慕大群岛海域进行研究,确定碳沉积随着季节的变化情况。(科学网任霄鹏/编译)
原始出处:
Science 27 April 2007:
Vol. 316. no. 5824, pp. 567 - 570
DOI: 10.1126/science.1137959
Research Articles
Revisiting Carbon Flux Through the Ocean's Twilight Zone
Ken O. Buesseler,1* Carl H. Lamborg,1 Philip W. Boyd,2 Phoebe J. Lam,1 Thomas W. Trull,3 Robert R. Bidigare,4 James K. B. Bishop,5,6 Karen L. Casciotti,1 Frank Dehairs,7 Marc Elskens,7 Makio Honda,8 David M. Karl,4 David A. Siegel,9 Mary W. Silver,10 Deborah K. Steinberg,11 Jim Valdes,12 Benjamin Van Mooy,1 Stephanie Wilson11
The oceanic biological pump drives sequestration of carbon dioxide in the deep sea via sinking particles. Rapid biological consumption and remineralization of carbon in the "twilight zone" (depths between the euphotic zone and 1000 meters) reduce the efficiency of sequestration. By using neutrally buoyant sediment traps to sample this chronically understudied realm, we measured a transfer efficiency of sinking particulate organic carbon between 150 and 500 meters of 20 and 50% at two contrasting sites. This large variability in transfer efficiency is poorly represented in biogeochemical models. If applied globally, this is equivalent to a difference in carbon sequestration of more than 3 petagrams of carbon per year.
1 Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA.
2 National Institute of Water and Atmospheric Research Centre for Physical and Chemical Oceanography, Department of Chemistry, University of Otago, Dunedin, New Zealand.
3 Antarctic Climate and Ecosystems Cooperative Research Centre, University of Tasmania and Commonwealth Scientific and Industrial Research Organisation, Marine and Atmospheric Research, Hobart, 7001, Australia.
4 Department of Oceanography, University of Hawaii, Honolulu, HI 96822, USA.
5 Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
6 Department of Earth and Planetary Science, University of California, Berkeley, CA 94720, USA.
7 Analytical and Environmental Chemistry, Free University of Brussels, B-1050 Brussels, Belgium.
8 Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Mutsu Institute for Oceanography, Yokosuka, Kanagawa 237-0061, Japan.
9 Institute for Computational Earth System Science, University of California, Santa Barbara, CA 93106, USA.
10 Ocean Sciences Department, University of California, Santa Cruz, CA 95064, USA.
11 Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, VA 23062, USA.
12 Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA.
* To whom correspondence should be addressed. E-mail: kbuesseler@whoi.edu