南开大学与5家国外研究机构合作完成的一项生物学成果,11月14日在著名的英国《自然》(Nature)杂志上发表。
论文标题为“一株可以在极端酸性条件下氧化甲烷的细菌”,是一项极端微生物领域国际合作项目的成果。11月14日,《自然》杂志网络版提前发表了论文内容。
这是一项由新西兰、美国、中国、荷兰、德国、加拿大的6家研究机构19位科研人员跨国合作的成果。南开大学泰达生物技术学院院长、天津市功能基因组与生物芯片研究中心主任、教育部“长江学者奖励计划”特聘教授王磊,是论文的3位共同责任作者之一。
这篇5页篇幅的论文今年8月13日投往《自然》杂志社,经过审稿后10月24日正式接收,11月14日在《自然》网络版先于纸质版杂志问世。
创刊于1869年的英国《自然》杂志,是一份在世界范围内举足轻重的综合性学术期刊,致力于“将科学研究和科学发现的伟大成果展示于公众面前”。(南开大学)
原始出处:
Nature advance online publication 14 November 2007 | doi:10.1038/nature06411; Received 13 August 2007; Accepted 24 October 2007; Published online 14 November 2007
Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia
Peter F. Dunfield1,9, Anton Yuryev2, Pavel Senin3,4, Angela V. Smirnova1, Matthew B. Stott1, Shaobin Hou3,4, Binh Ly3,4, Jimmy H. Saw3, Zhemin Zhou5, Yan Ren5, Jianmei Wang5, Bruce W. Mountain1, Michelle A. Crowe1, Tina M. Weatherby6, Paul L. E. Bodelier7, Werner Liesack8, Lu Feng5, Lei Wang5 & Maqsudul Alam3,4
GNS Science, Extremophile Research Group, Private Bag 2000, Taupo, New Zealand
Ariadne Genomics, Inc., 9430 Key West Avenue no. 113, Rockville, Maryland 20850, USA
Department of Microbiology, University of Hawaii, Snyder Hall no. 207, 2538 The Mall, Honolulu, Hawaii 96822, USA
Advanced Studies in Genomics, Proteomics and Bioinformatics, College of Natural Sciences, Keller Hall 319, 2565 McCarthy Mall, Honolulu, Hawaii 96822, USA
TEDA School of Biological Sciences and Biotechnology, Nankai University, 23 HongDa Street, Tianjin 300457, China
Biological Electron Microscopy Facility, Pacific Biosciences Research Center, University of Hawaii at Manoa, Snyder Hall no. 118, Honolulu, Hawaii 96822, USA
Netherlands Institute of Ecology (NIOO-KNAW), Centre for Limnology, Department of Microbial Wetland Ecology, Rijksstraatweg 6, 3631 AC, Nieuwersluis, The Netherlands
Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse, 35043 Marburg, Germany
Present address: Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada.
Correspondence to: Peter F. Dunfield1,9Lei Wang5Maqsudul Alam3,4 Correspondence and requests for materials should be addressed to P.D. (Email: p.dunfield@gns.cri.nz), M.A. (Email: alam@hawaii.edu) or L.W. (Email: wanglei@nankai.edu.cn).
Aerobic methanotrophic bacteria consume methane as it diffuses away from methanogenic zones of soil and sediment1. They act as a biofilter to reduce methane emissions to the atmosphere, and they are therefore targets in strategies to combat global climate change. No cultured methanotroph grows optimally below pH 5, but some environments with active methane cycles are very acidic2, 3. Here we describe an extremely acidophilic methanotroph that grows optimally at pH 2.0–2.5. Unlike the known methanotrophs, it does not belong to the phylum Proteobacteria but rather to the Verrucomicrobia, a widespread and diverse bacterial phylum that primarily comprises uncultivated species with unknown genotypes. Analysis of its draft genome detected genes encoding particulate methane monooxygenase that were homologous to genes found in methanotrophic proteobacteria. However, known genetic modules for methanol and formaldehyde oxidation were incomplete or missing, suggesting that the bacterium uses some novel methylotrophic pathways. Phylogenetic analysis of its three pmoA genes (encoding a subunit of particulate methane monooxygenase) placed them into a distinct cluster from proteobacterial homologues. This indicates an ancient divergence of Verrucomicrobia and Proteobacteria methanotrophs rather than a recent horizontal gene transfer of methanotrophic ability. The findings show that methanotrophy in the Bacteria is more taxonomically, ecologically and genetically diverse than previously thought, and that previous studies have failed to assess the full diversity of methanotrophs in acidic environments.