比利时的生命科学家发现细菌有一种独特的机制,能抑制氧化对细胞的有害影响。他们通过修饰大肠杆菌的DNA揭示了这种机制的存在,该机制能够修复细胞中已经被氧化破坏的蛋白。
科学家表示,在人类中也存在着一个相似的修复系统。这项研究结果发布在Science上。
蛋白质是我们细胞最重要的成分,它们能辅助细胞中的化学反应,提供结构支持,方便生物之间的交流。然而,对于氧化造成的有害影响,蛋白质也是很敏感的。研究人员表示,这些蛋白质都包含硫磺成分,并以半胱氨酸为基础,此外这些蛋白的半胱氨酸堆积块通常是以成对的形式出现。
但是,细胞中还含有其他的蛋白质,其半胱氨酸堆积块是单独出现的。这些单独的半胱氨酸对抗氧化的机制还不是很清楚。直到现在,科学家已经在大肠杆菌中识别了蛋白DsbG 和DsbC在细胞中形成巧妙的修复装置基础的机制。当蛋白质的半胱氨酸堆积块被氧化破坏时,其中的一个蛋白会负责修复破坏。
这项研究阐明了细胞在面临氧化破坏时自我保护的机制。(生物谷Bioon.com)
生物谷推荐原始出处:
Science 20 November 2009:DOI: 10.1126/science.1179557
A Periplasmic Reducing System Protects Single Cysteine Residues from Oxidation
Matthieu Depuydt,1 Stephen E. Leonard,2 Didier Vertommen,1 Katleen Denoncin,1 Pierre Morsomme,3 Khadija Wahni,4,5 Joris Messens,4,5 Kate S. Carroll,2 Jean-Fran?ois Collet1,*
The thiol group of the amino acid cysteine can be modified to regulate protein activity. The Escherichia coli periplasm is an oxidizing environment in which most cysteine residues are involved in disulfide bonds. However, many periplasmic proteins contain single cysteine residues, which are vulnerable to oxidation to sulfenic acids and then irreversibly modified to sulfinic and sulfonic acids. We discovered that DsbG and DsbC, two thioredoxin-related proteins, control the global sulfenic acid content of the periplasm and protect single cysteine residues from oxidation. DsbG interacts with the YbiS protein and, along with DsbC, regulates oxidation of its catalytic cysteine residue. Thus, a potentially widespread mechanism controls sulfenic acid modification in the cellular environment.
1 de Duve Institute, Université catholique de Louvain, B-1200 Brussels, Belgium.
2 Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109–1048, USA.
3 Institut des Sciences de la Vie, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium.
4 Department of Molecular and Cellular Interactions, Vlaams Instituut voor Biotechnologie (VIB), Vrije Universiteit Brussel, B-1050 Brussels, Belgium.
5 Structural Biology Brussels, Vrije Universiteit Brussel, B-1050 Brussels, Belgium.