幽门螺杆菌是一种单极、多鞭毛、末端钝圆、螺旋形弯曲的细菌。长2.5~4.0μm,宽0.5~1.0μm。革兰染色阴性。有动力。在胃粘膜上皮细胞表面常呈典型的螺旋状或弧形。在固体培养基上生长时,除典型的形态外,有时可出现杆状或圆球状。
幽门螺杆菌感染是慢性活动性胃炎、消化性溃疡、胃黏膜相关淋巴组织(MALT) 淋巴瘤和胃癌的主要致病因素。1994年世界卫生组织/国际癌症研究机构 (WHO/IARC) 将幽门螺杆菌定为Ⅰ类致癌原。
幽门螺旋杆菌感染大约一半的人口,能在胃中的酸性条件下生存。该细菌的大多数携带者是没有症状的,但有些人则会有炎症、溃疡和胃癌。现在,利用一种选择主转录体的5'端的新方法,研究人员已经确定了幽门螺旋杆菌(主要是未经处理的信使RNA和小型非编码RNA)在各种不同生长条件下的“主转录组”。结合以前已发表的基因组序列和蛋白“相互作用组”,这项工作将为普遍使用的幽门螺旋杆菌菌种26695提供第三组普适性参照数据。(生物谷Bioon.com)
相关阅读
杀灭幽门螺旋杆菌——让人们远离胃癌
J. Med. Chem.:发现抗幽门螺旋杆菌活性化合物
EBM:幽门螺旋杆菌诱发形成自噬小体
生物谷推荐原文出处:
Nature doi:10.1038/nature08756
The primary transcriptome of the major human pathogen Helicobacter pylori
Cynthia M. Sharma1, Steve Hoffmann2, Fabien Darfeuille3,4, Jérémy Reignier3,4, Sven Findei?2, Alexandra Sittka1, Sandrine Chabas3,4, Kristin Reiche5, J?rg Hackermüller5, Richard Reinhardt6, Peter F. Stadler2,5,7,8,9 & J?rg Vogel1,10
1 Max Planck Institute for Infection Biology, RNA Biology Group, D-10117 Berlin, Germany
2 University of Leipzig, Department of Computer Science & Interdisciplinary Centre for Bioinformatics, D-04107 Leipzig, Germany
3 INSERM U869 and,
4 Université de Bordeaux, F-33076 Bordeaux Cedex, France
5 Fraunhofer Institute for Cell Therapy and Immunology, RNomics Group, D-04103 Leipzig, Germany
6 Max Planck Institute for Molecular Genetics, D-14195 Berlin, Germany
7 Max Planck Institute for the Mathematics in Sciences, D-04103 Leipzig, Germany
8 University of Vienna, Institute for Theoretical Chemistry, A-1090 Vienna, Austria
9 The Santa Fe Institute, Santa Fe, 87501 New Mexico, USA
10 University of Würzburg, Institute for Molecular Infection Biology, D-97080 Würzburg, Germany
Genome sequencing of Helicobacter pylori has revealed the potential proteins and genetic diversity of this prevalent human pathogen, yet little is known about its transcriptional organization and noncoding RNA output. Massively parallel cDNA sequencing (RNA-seq) has been revolutionizing global transcriptomic analysis. Here, using a novel differential approach (dRNA-seq) selective for the 5′ end of primary transcripts, we present a genome-wide map of H. pylori transcriptional start sites and operons. We discovered hundreds of transcriptional start sites within operons, and opposite to annotated genes, indicating that complexity of gene expression from the small H. pylori genome is increased by uncoupling of polycistrons and by genome-wide antisense transcription. We also discovered an unexpected number of ~60 small RNAs including the ?-subdivision counterpart of the regulatory 6S RNA and associated RNA products, and potential regulators of cis- and trans-encoded target messenger RNAs. Our approach establishes a paradigm for mapping and annotating the primary transcriptomes of many living species.