据美国物理学家组织网8月21日报道,美国加州大学洛杉矶分校大卫·格芬医学院、凯斯西储大学和塔夫斯大学等多家研究机构合作,在人体内发现了一种能抵抗艰难梭菌感染的天然防御机制。该发现为治疗肠道疾病提供了一种新模式,并有助于开发治疗其他类型的腹泻和非腹泻型细菌感染的新方法。相关研究发表在8月21日的《自然—医学》杂志网站上。
艰难梭菌感染是一种普通的肠道疾病,会导致腹泻、大肠炎、结肠炎等,甚至死亡,常在医院中传染流行。该感染在美国的发病率比10年前增加了一倍,而且新的高毒性菌种的出现也让治疗变得更加困难。
研究人员解释说,艰难梭菌在繁殖期会释放两种强力毒素,这些毒素能和InsP6(一种广泛存在于叶类蔬菜和胃肠道中的物质)结合,然后发生变形和断裂,断裂的碎片能穿透细胞壁,导致胃肠道出血性损伤,引起炎症反应和腹泻。
研究人员发现,在感染艰难梭菌后,人体肠道内的细胞能释放一种含有亚硝基(-NO)的分子巯基亚硝基化谷胱甘肽(GSNO),该分子能直接占据毒素的活性基位,使其丧失活性,从而遏止了它们穿透和损害肠道细胞。
“这种天然防御机制是由人体进化而来,其核心是巯基亚硝基化(SNO)过程,该过程是一种将一氧化氮(NO)和半胱氨酸(cysteine)残基结合在一起的蛋白修饰作用。”凯斯西储大学转化分子医学研究院的乔纳森·斯坦拉说,“理解这种毒素灭活机制的原理,提供了开发新疗法的基础,让我们能直接瞄准毒素,遏制细菌感染的传播。”
在动物实验中,研究人员用药物引发了巯基亚硝基化过程,成功阻止了艰难梭菌毒素破坏肠道细胞。下一步即将开展相关的人体临床试验。
“找到新的治疗模式抵抗艰难梭菌感染是一个很大的进步。”论文合著者、加州大学洛杉矶分校炎症性肠道疾病中心主任切罗拉波斯·博斯拉吉斯说,“我们通过基因测序还发现,巯基亚硝基化过程能调控上百种微生物蛋白。如果试验成功的话,还能用于治疗其他细菌性疾病。”(生物谷 Biooon.com)
doi:10.1038/nm.2405
PMC:
PMID:
Host S-nitrosylation inhibits clostridial small molecule-activated glucosylating toxins
Tor C Savidge; Petri Urvil; Numan Oezguen; Kausar Ali; Aproteem Choudhury; Vinay Acharya; Irina Pinchuk; Alfredo G Torres; Robert D English; John E Wiktorowicz; Michael Loeffelholz; Raj Kumar; Lianfa Shi; Weijia Nie; Werner Braun; Bo Herman; Alfred Hausladen; Hanping Feng; Jonathan S Stamler; Charalabos Pothoulakis
The global prevalence of severe Clostridium difficile infection highlights the profound clinical significance of clostridial glucosylating toxins1, 2, 3, 4. Virulence is dependent on the autoactivation of a toxin cysteine protease5, 6, 7, 8, 9, which is promoted by the allosteric cofactor inositol hexakisphosphate (InsP6)10, 11, 12, 13, 14, 15, 16, 17. Host mechanisms that protect against such exotoxins are poorly understood. It is increasingly appreciated that the pleiotropic functions attributed to nitric oxide (NO), including host immunity, are in large part mediated by S-nitrosylation of proteins18, 19. Here we show that C. difficile toxins are S-nitrosylated by the infected host and that S-nitrosylation attenuates virulence by inhibiting toxin self-cleavage and cell entry. Notably, InsP6- and inositol pyrophosphate (InsP7)-induced conformational changes in the toxin enabled host S-nitrosothiols to transnitrosylate the toxin catalytic cysteine, which forms part of a structurally conserved nitrosylation motif. Moreover, treatment with exogenous InsP6 enhanced the therapeutic actions of oral S-nitrosothiols in mouse models of C. difficile infection. Allostery in bacterial proteins has thus been successfully exploited in the evolutionary development of nitrosothiol-based innate immunity and may provide an avenue to new therapeutic approaches.