近日,国际著名杂志PLoS Pathogens在线刊登了英国研究人员的最新研究成果“Structural and Functional Insights into the Pilotin-Secretin Complex of the Type II Secretion System,”,文章中,作者揭示了致病菌感染人体和农作物的新机制,为后期开发新型抗生素治疗感染性疾病提供了一定的参考。
近年来,随着致病细菌对抗生素耐药性的升高,不管是在人类中还是在农业上,都亟待需要一些创新型的方法来应对细菌的感染;英国皇后玛丽学院的研究者最近研究了细菌的二型分泌系统(Type II secretion system),该系统是大肠杆菌和霍乱弧菌等致病菌的毒性因子分泌系统,细菌可以利用该系统将毒素输送至感染者体内,从而给病人带来严重的难以治愈的疾病。
领导此项研究的是Richard Pickersgill教授,他表示:“细菌的分泌系统可以运送毒性因子到病人的组织中,如果我们知道这些分泌系统是如何工作的,我们就可以想办法阻断这种运输途径,破坏细菌的分泌系统,从而减少细菌的感染。”
为了进行成功的感染,革兰氏阴性菌必须通过细胞内膜和外膜将毒性因子注入到宿主的组织中,Richard Pickersgill教授指出,细菌的毒性因子是通过外膜膜孔来运输的,这些膜孔是由很多蛋白亚单位构成的,这些蛋白亚单位也是通过一种蛋白质进行引导从而定位的。引导蛋白与诸多蛋白亚单位相互作用,最终形成外膜的膜孔,如果引导蛋白缺失了,在细菌中,只会形成内膜膜孔,不会形成外膜膜孔,这样就会导致细菌的分泌系统失去作用,崩溃掉。Richard Pickersgill教授还补充说:“如果我们可以成功的干扰引导蛋白使它失去作用,这样,细菌就不能建立完善的分泌体系,就会大大阻止疾病的发生了。”
大肠杆菌和霍乱弧菌同样可以利用二型分泌系统来感染食物,造成食物腐败,比如Dickeya dadantii;近年来,由于全球气候变化引起的湿热天气,尤其是在英国,因为湿热天气缘故,细菌感染农作物造成的农作物腐败的现象越来越多。
Richard Pickersgill教授领导的研究组希望他们的研究结果能够给制药公司提供一些理论基础,供医药公司来开发新的抗生素,同样给农业科学家也能够提供一定的建议,采取新的措施来阻止细菌感染农作物。(生物谷: T.Shen编译)
doi:10.1371/journal.ppat.1002531
PMC:
PMID:
Structural and Functional Insights into the Pilotin-Secretin Complex of the Type II Secretion System
Shuang Gu1#, Saima Rehman1#, Xiaohui Wang2, Vladimir E. Shevchik2*, Richard W. Pickersgill1*
Gram-negative bacteria secrete virulence factors and assemble fibre structures on their cell surface using specialized secretion systems. Three of these, T2SS, T3SS and T4PS, are characterized by large outer membrane channels formed by proteins called secretins. Usually, a cognate lipoprotein pilot is essential for the assembly of the secretin in the outer membrane. The structures of the pilotins of the T3SS and T4PS have been described. However in the T2SS, the molecular mechanism of this process is poorly understood and its structural basis is unknown. Here we report the crystal structure of the pilotin of the T2SS that comprises an arrangement of four α-helices profoundly different from previously solved pilotins from the T3SS and T4P and known four α-helix bundles. The architecture can be described as the insertion of one α-helical hairpin into a second open α-helical hairpin with bent final helix. NMR, CD and fluorescence spectroscopy show that the pilotin binds tightly to 18 residues close to the C-terminus of the secretin. These residues, unstructured before binding to the pilotin, become helical on binding. Data collected from crystals of the complex suggests how the secretin peptide binds to the pilotin and further experiments confirm the importance of these C-terminal residues in vivo.