近日,国际微生物权威杂志BMC Microbiology在线刊登了美国俄勒冈州立大学研究人员的最新研究成果“Quorum sensing modulates colony morphology through alkyl quinolones in Pseudomonas aeruginosa”,文章中,研究者揭示了绿脓杆菌的群体感应系统(Quorum sensing)可以通过烷基-喹诺酮信号分子(alkyl quinolones,AQ)来调节菌体的形态。
铜绿假单胞菌是一类重要的人类机会致病菌,这种细菌可以寄居到多种的宿主身上,在土壤到免疫力低下的病人身上都有分布。在环境中,绿脓杆菌更倾向于生成生物被膜来进行繁殖生存,并且引起感染等,细菌可以依据所处的不同环境形成不同类型的生物被膜;在静态的液体培养基表面,细菌可以在液体-空气交界面形成薄膜(pellicles),在流动的液体中,细菌更倾向于吸附至固体表面,并且在固体表面形成生物被膜,如果在完全固体的培养基表面,细菌更易于生成完整形态的菌体(colonies)。生物被膜是由许多的胞外表多糖(EPS)基质组装而成的,而且包含了许多胞外DNA、蛋白质、RNA和离子等,在绿脓杆菌中,两个操纵子家族基因pel和psl主要合成表多糖,前者主要编码葡萄糖,而后者主要编码半乳糖和甘露糖。
绿脓杆菌的群体感应系统是一个依赖细胞密度来调节的细菌信号转导系统,细菌含有群体感应系统含有三个组分:las系统、rhl系统和PQS系统,其中PQS系统以烷基-喹诺酮信号分子(AQ)为基础;三个系统中,las系统(包括转录调节子LasR和信号合成酶LasI)中转录调节子LasR可以正调节AQ的生成,而AQ同时在las系统缺失的情况下也可以被生成;rhl系统可以抑制AQ的生成,AQ的生物合成酶可以使细菌产生超过50种AQ分子,群体感应系统中三个系统可以互相调节,他们也可以调控铜绿假单胞菌基因组超过5%的基因。
研究者Schuster Martin表示,他们的研究工作揭示了QS系统和EPS之间的关系,作者运用了染色质免疫共沉淀微阵列法(CHIP-chip)和电泳迁移位移实验(EMSA)等方法进行了研究,结果表明,LasR可以结合到表多糖合成基因Psl的启动子位置,然而LasR的缺失如何影响EPS的产量以及影响菌落生物被膜的产生,研究者构建了lasR的突变体,该突变体在37℃可以形成褶皱的菌落形态,于是就表明las系统和psl之间有某种联系,然后研究者发现菌体出现褶皱的形态和pel基因有关系,而和psl基因并没有关系,抑制诱变实验表明,lasR突变体涉及介导了PQS途径,研究者通过薄层色谱法对AQ分子进行了表型分析和定量分析,结果表明AQ信号分子可以调节细菌的菌落形态。作者的研究结果表明las系统可以抑制Pel并且通过4-羟烷基-喹诺酮信号分子来调节细菌菌体的形态,这就揭示了铜绿假单胞菌中AQ信号分子的一个新的功能。(生物谷:T.Shen编译)
doi:10.1186/1471-2180-12-30
PMC:
PMID:
Quorum sensing modulates colony morphology through alkyl quinolones in Pseudomonas aeruginosa
Rashmi Gupta and Martin Schuster
Background Acyl-homoserine lactone (acyl-HSL) and alkyl quinolone (AQ) based quorum-sensing (QS) systems are important for Pseudomonas aeruginosa virulence and biofilm formation. The effect of QS on biofilm formation is influenced by various genetic and environmental factors. Here, we used a colony biofilm assay to study the effect of the central acyl-HSL QS regulator, LasR, on biofilm formation and structure in the representative clinical P. aeruginosa isolate ZK2870.
Results A lasR mutant exhibited wrinkled colony morphology at 37degreesC in contrast to the smooth colony morphology of the wild-type. Mutational analysis indicated that wrinkling of the lasR mutant is dependent on pel, encoding a biofilm matrix exopolysaccharide. Suppressor mutagenesis and complementation analysis implicated the AQ signaling pathway as the link between las QS and colony morphology. In this pathway, genes pqsA-D are involved in the synthesis of 4-hydroxyalkyl quinolines ("Series A congeners"), which are converted to 3,4-dihydroxyalkyl quinolines ("Series B congeners", including the well-characterized Pseudomonas Quinolone Signal, PQS) by the product of the LasR-dependent pqsH gene. Measurement of AQ in the wild-type, the lasR pqsA::Tn suppressor mutant as well as the defined lasR, pqsH, and lasR pqsH mutants showed a correlation between 4-hydroxyalkyl quinoline levels and the degree of colony wrinkling. Most importantly, the lasR pqsH double mutant displayed wrinkly morphology without producing any 3,4-dihydroxyalkyl quinolines. Constitutive expression of pqsA-D genes in a lasR pqsR::Tn mutant showed that colony wrinkling does not require the AQ receptor PqsR.
Conclusions Taken together, these results indicate that the las QS system represses Pel and modulates colony morphology through a 4-hydroxyalkyl quinoline in a PqsR-independent manner, ascribing a novel function to an AQ other than PQS in P. aeruginosa.