Copyright ©版权归生物谷所有,若未得到Bioon授权,请勿转载。
近日,中佛罗里达大学的研究者发明了一种新技术,这种新技术可以帮助医生快速准确地检测出包括克罗恩疾病在内的炎性肠病相关的病原菌。这种基于纳米颗粒的新技术也可以帮助科学家检测隐藏在人类组织深处的微生物。微生物可以引起严重的健康问题,当前我们所拥有的检测微生物的技术花费时间较长,而且时间过长容易耽误病人有效的治疗。而研究者在文章中所阐述的这项新技术中,他们运用涂有特殊DNA标记物的纳米颗粒来对掩藏的微生物进行检测,这种新技术的检测效率和准确率比较高,优于以往的检测方法,成为医生进行检测的好帮手。
研究者Naser表示,他们的检测方法超越了传统的分子生化检测方法,而且基于纳米技术,方便准确,而且可靠。相关的研究成果刊登在了近日的国际著名杂志PLoS One上。研究者发明了杂交磁性松弛纳米传感技术(hMRS),可以对隐藏在个体细胞中的病原菌微量DNA进行灵敏检测,hMRS包含涂有氧化铁的聚合体,而且可以进行特异性的化学修饰,来结合在DNA标记物伤,用以检测病原菌。当hMRS结合了病原菌的DNA,磁性共振信号便会检测到,信号将被放大,然后研究者将会在电脑上读取磁性信号的改变,最终决定样品是否被病原菌感染了。
研究者Perez说,这项技术将会为医疗卫生工作者提供更好的可操作性技术,以更快的检测出病原菌的存在。就在去年,Perez教授和他的研究团队意外地发现磁性纳米传感器的DNA结合特异性,如今他们在取得了极大的进步,这项新的检测微生物的技术将更好地为临床检测上提供强大的技术支持。(生物谷:T.Shen编译)
Copyright ©版权归生物谷所有,若未得到Bioon授权,请勿转载。
doi:10.1371/journal.pone.0035326
PMC:
PMID:
Rapid and Sensitive Detection of an Intracellular Pathogen in Human Peripheral Leukocytes with Hybridizing Magnetic Relaxation Nanosensors
Charalambos Kaittanis1, Hamza Boukhriss1, Santimukul Santra1, Saleh A. Naser2, J. Manuel Perez1,2,3*
Bacterial infections are still a major global healthcare problem. The quick and sensitive detection of pathogens responsible for these infections would facilitate correct diagnosis of the disease and expedite treatment. Of major importance are intracellular slow-growing pathogens that reside within peripheral leukocytes, evading recognition by the immune system and detection by traditional culture methods. Herein, we report the use of hybridizing magnetic nanosensors (hMRS) for the detection of an intracellular pathogen, Mycobacterium avium spp. paratuberculosis (MAP). The hMRS are designed to bind to a unique genomic sequence found in the MAP genome, causing significant changes in the sample’s magnetic resonance signal. Clinically relevant samples, including tissue and blood, were screened with hMRS and results were compared with traditional PCR analysis. Within less than an hour, the hMRS identified MAP-positive samples in a library of laboratory cultures, clinical isolates, blood and homogenized tissues. Comparison of the hMRS with culture methods in terms of prediction of disease state revealed that the hMRS outperformed established culture methods, while being significantly faster (1 hour vs 12 weeks). Additionally, using a single instrument and one nanoparticle preparation we were able to detect the intracellular bacterial target in clinical samples at the genomic and epitope levels. Overall, since the nanoparticles are robust in diverse environmental settings and substantially more affordable than PCR enzymes, the potential clinical and field-based use of hMRS in the multiplexed identification of microbial pathogens and other disease-related biomarkers via a single, deployable instrument in clinical and complex environmental samples is foreseen.