现代临床医学中,传统抗生素的大量使用和滥用导致各种耐药菌株的出现,对人类健康造成威胁。近日,中科院昆明动物所的“临床耐药菌感染”研究获得突破,新型肽类抗生素有望打破“耐药”瓶颈,为攻克这一世界性医学难题提供研究支持。
感染是目前医院住院病人死亡的主要原因之一,据美国新英格兰医学杂志统计,仅在美国,每年败血症的发病率为75万人,其中死亡22.5万。抗生素市场总额大约在300亿美元左右,半个世纪以来没有开发出真正意义上的新类型抗生素。
参与该项目的科研人员李文辉介绍,随着传统抗生素的大量使用和滥用,在临床上出现各种各样的耐药菌株,如携带NDM-1质粒的“超级细菌”、耐甲氧西林、万古霉素致病菌等,目前临床使用的抗生素对这些耐药菌已无疗效,成为目前特别是今后危害人类健康的重大威胁。
在与致病菌变异竞争的过程中,自然界各种来源的抗菌肽成为人们研发新型抗感染药物的希望,但毒性和低下的体内药效成为限制大多数抗菌肽用于临床药物研发的瓶颈。
中科院昆明动物研究所动物模型与人类疾病机理重点实验室生物毒素与人类疾病课题组,在前期大量抗菌肽研究工作和相关发明专利“爬行动物cathelicidin抗菌肽及衍生物及其应用”基础上,建立了临床耐药菌感染动物模型,深入开展了眼镜王蛇毒OH-CATH30抗菌肽及衍生物的体内药效学评价。
李文辉介绍,课题组分别建立了“小鼠大腿细菌感染模型”和“小鼠败血症细菌感染模型”,并注入目前临床广泛使用的抗生素药物头孢哌酮钠和OH-CATH30抗菌肽及衍生物进行对比观察。研究结果表明,在头孢哌酮钠无效的情况下,OH-CATH30及衍生物在安全剂量范围内(低于毒性剂量10倍以上),对于全身性和致死性耐药菌感染具有良好的治疗和保护作用,为攻克这一世界性医学难题提供了研究支持。
李文辉说:“肽类抗生素与传统抗生素的作用机制不一样,其产生耐药菌的几率要比传统抗生素低得多。此项试验为开发抗耐药菌的新型治疗候选药物提供了坚实的药效学基础。”
该研究获得国家重大新药创制专项,国家973计划项目以及国家基金委-云南省联合基金项目的资助,相关研究成果已在线发表于美国著名药理学和药学杂志《Antimicrobial Agents and Chemotherapy》。
中国科学院昆明动物研究所成立于1959年4月,主要研究领域和学科发展方向为围绕进化生物学、资源动物学和保护生物学为优势学科方向,开展热带、亚热带动物资源的保护、可持续利用和生物学基础研究,在动物天然药物的研发、生物技术在大农业生产中的应用等方面有所突破,其研究成果在国内外著名学术刊物上发表学术论文多篇,有较高国际声誉。(生物谷:Bioon.com)
doi:10.1128/AAC.06304-11
PMC:
PMID:
Efficacy of OH-CATH30 and its analogs against drug-resistant bacteria in vitro and in mouse models
Sheng-An Li, Wen-Hui Lee and Yun Zhang
Antimicrobial peptides (AMPs) have been considered as alternatives to conventional antibiotics for drug-resistant bacterial infections. However, their comparatively high toxicity toward eukaryotic cells and poor efficacy in vivo hamper their clinical application. OH-CATH30, a novel cathelicidin peptide deduced from the king cobra, possesses potent antibacterial activity in vitro. The objective of this study is to evaluate the efficacy of OH-CATH30 and its analogs against drug-resistant bacteria in vitro and in vivo. The minimal inhibitory concentrations (MICs) of OH-CATH30 and OH-CM6 ranged from 1.56 to 12.5 μg/ml against drug-resistant clinical isolates of several pathogenic species, including Escherichia coli, Pseudomonas aeruginosa, and methicillin-resistant Staphylococcus aureus. The MICs of OH-CATH30 and OH-CM6 were slightly altered in the presence of 25% human serum. OH-CATH30 and OH-CM6 killed E. coli quickly (within 60 min) by disrupting the bacterial cytoplasmic membrane. Importantly, the 50% lethal dose (LD50) of OH-CATH30 and OH-CM6 in mice following intraperitoneal (i.p.) injection was 120 mg/kg and 100 mg/kg, respectively, and no death was observed at any dose up to 160 mg/kg following subcutaneous (s.c.) injection. Moreover, 10 mg/kg OH-CATH30 or OH-CM6 significantly decreased the bacterial counts as well as the inflammatory response in a mouse thigh infection model and rescued infected mice in a bacteremia model induced by drug-resistant E. coli. Taken together, our findings demonstrate that the natural cathelicidin peptide, OH-CATH30, and its analogs exhibit relatively low toxicity and potent efficacy in mouse models, indicating that they may have therapeutic potential against the systemic infections caused by drug-resistant bacteria.