据英国广播公司报道,英国里兹大学与日本东京农工大学的研究团队目前在研究会吃铁的微生物-磁性细菌,研究人员表示,磁性细菌在未来或许可用来打造生物电脑。
据了解,这些微生物摄取铁时,本身内部会制造出微小磁铁,类似个人电脑硬碟的内部情况。科学家团队说,这项研究或许会导致制造出速度更快硬碟。
随着科技的进步,电脑零件变得越来越小,要制造出纳米级电子产品越来越困难。 因此,研究人员现在转而求助于大自然,让微生物加入制造行列。
科学家目前研究所使用的细菌为趋磁螺菌(Magnetospirillum magneticum)。这些天生含有磁性的微生物,通常都栖息在有水的环境里,像是池塘与湖泊,在氧气稀少的水面底下。
它们会跟着地球磁场线上下游动,在磁场中排列成像罗盘指针的样子,寻找它们偏好的氧气浓度。 这些细菌摄取铁时,内部的蛋白质会与铁相互作用,产生磁铁矿的微小结晶体。
研究人员对这种微生物在体内收集、形成与排列这些纳米大小磁铁进行研究后,研究人员利用这种方法,将其运用在细菌外,制成有效的"生长"磁铁,未来可用来打造硬碟。
里兹大学主要研究人员史坦宁表示,随着电脑零件变得越来越小,我们已经接近传统电子制造的极限。传统制造这些零件的机器,已经变得不实用,大自然可以提供我们解决这个问题的完美工具。(生物谷:Bioon.com)
doi:10.1002/smll.201101627
PMC:
PMID:
Biotemplated Magnetic Nanoparticle Arrays
Johanna M. Galloway, Jonathan P. Bramble, Andrea E. Rawlings, Gavin Burnell, Stephen D. Evans, Sarah S. Staniland
Immobilized biomineralizing protein Mms6 templates the formation of uniform magnetite nanoparticles in situ when selectively patterned onto a surface. Magnetic force microscopy shows that the stable magnetite particles maintain their magnetic orientation at room temperature, and may be exchange coupled. This precision-mixed biomimetic/soft-lithography methodology offers great potential for the future of nanodevice fabrication.
doi:10.1002/smll.201102446
PMC:
PMID:
Fabrication of Lipid Tubules with Embedded Quantum Dots by Membrane Tubulation Protein
Masayoshi Tanaka1,2,*, Kevin Critchley1, Tadashi Matsunaga2, Stephen D. Evans1, Sarah S. Staniland
The first one-dimensional (1D) assembly of low-toxicity CuInS2/ZnS quantum dots (QDs) embedded in lipid nanotubules, formed from liposomes using the Amphiphysin-BAR (Bin-Amphiphysin-Rvs domain of human amphiphysin) protein to elongate the structure, is reported. The QD-containing lipid nanotubules display a high aspect ratio of ≈500:1 (≈40 nm diameter and 20 μm length) and are stable for more than 20 h. Furthermore, this methodology is extended to the assembly of various nanoparticle species within 1D lipid nanotubules, and includes materials such as CdSe and Au. Encapsulation within the hydrophobic core of the bilayer makes these materials highly biocompatible. The developed methodology and materials with these unique characteristics could be useful for various applications in nanobiotechnology and nanomedicine.