研究者Varki和其同事研究表明,传染病可以影响人类的起源与进化。(Credit: Image courtesy of University of California, San Diego Health Sciences)
大约在10万年前,人类的进化达到了一个瓶颈期,我们的祖先减少到大约5-10万人生活在非洲,如今的现代人就是从这些人群中演变而来的,并且在数量和范围上急剧扩散,最后取代了其他共同存在的远房亲戚,就比如穴居人。如今这个瓶颈问题依然没有解决,各种猜测的原因都有,比如基因突变、文化发展差异以及火山喷发等等。当然了,这其中还有另外的一个因素:感染性疾病的发生。
这项刊登在6月4日的国际杂志PNAS上的研究指出,两种和免疫系统相关的特异性基因的失活或许解释了如今选定的现代人类的祖先都是具有抵御致病性细菌的能力的。这项研究由加利福尼亚大学的研究者来进行。
在一个小的受限制的群体中,一个单一的突变可以引发大的效应,一种罕见的等位基因可以达到更高的频率。研究者Ajit Varki表示,他们发现了两个人类非功能性的基因,这两个基因可以作为致病菌的靶点,可以引发新生儿的死亡。新生儿的死亡可以极大地改变人类的繁殖适度。物种的生存依赖的是其要么可以抵御致病菌要么可以消除致病菌的靶位蛋白。
这项研究中,来自各国的研究者重点关注了两个唾液酸信号受体siglecs,这两个受体的失活可以调节免疫系统,而且这两个基因在人类进化的过程中被认为是应当被激活的。
研究者Varki以前研究表明,一些致病菌可以利用siglecs来改变宿主的免疫效应。在这项最新的研究当中,科学家们发现了基因siglec-13在部分现代人中并不存在,尽管该基因在黑猩猩中完整而且有功能;另外一个基因siglec-17在人类机体中表达,但是该基因如果稍微做出调整,其失活的蛋白质就会作为致病菌侵入的靶点。
基因组测序可以为我们研究有机体的进化提供强有力的视野,当然包括人类,研究者Eric D.Green表示,在一项新的实验中,科学家复活了“分子化石”,并且发现这些蛋白质可以被致病菌大肠杆菌和链球菌所识别,现代的致病菌依然可以结合蛋白质并且潜在地改变宿主的免疫反应。
尽管不可能精确地分辨出在进化过程中到底发生了什么,但是研究者们通过研究这些基因周围的分子特征,表示大约在10万至20万年之间,我们的祖先经历了一次大规模的致病菌的威胁,这就意味着有选择性的清除会改变祖先的数量,仅仅会有携带有基因突变的个体会存活下来,因此,现代人中都携带有非功能性的siglec-17基因和siglec-13基因的缺失。
Varki表示,人类进化的瓶颈是很多因子多重复杂作用的结果,物种的形成是受很多因素所牵引的,当然了,感染性的因子也是其中的一种。研究者的这项研究由美国国立卫生研究院等机构支持。(生物谷Bioon.com)
编译自:How Infectious Disease May Have Shaped Human Origins
编译者:T.Shen
doi:10.1073/pnas.1119459109
PMC:
PMID:
Specific inactivation of two immunomodulatory SIGLEC genes during human evolution
Xiaoxia Wanga,b,1, Nivedita Mitraa,b,1, Ismael Secundinoa,b,c,1, Kalyan Bandaa,b, Pedro Cruzd, Vered Padler-Karavania,b, Andrea Verhagena,b, Chris Reida,b, Martina Larie, Ermanno Rizzif, Carlotta Balsamoe, Giorgio Cortif, Gianluca De Bellisf, Laura Longog, NISC Comparative Sequencing Programd,2, William Beggsh, David Caramellie, Sarah A. Tishkoffh, Toshiyuki Hayakawai, Eric D. Greend, James C. Mullikind, Victor Nizeta,b,c, Jack Buia, and Ajit Varkia,b,3
Sialic acid-recognizing Ig-like lectins (Siglecs) are signaling receptors that modulate immune responses, and are targeted for interactions by certain pathogens. We describe two primate Siglecs that were rendered nonfunctional by single genetic events during hominin evolution after our common ancestor with the chimpanzee. SIGLEC13 was deleted by an Alu-mediated recombination event, and a single base pair deletion disrupted the ORF of SIGLEC17. Siglec-13 is expressed on chimpanzee monocytes, innate immune cells that react to bacteria. The human SIGLEC17P pseudogene mRNA is still expressed at high levels in human natural killer cells, which bridge innate and adaptive immune responses. As both resulting pseudogenes are homozygous in all human populations, we resurrected the originally encoded proteins and examined their functions. Chimpanzee Siglec-13 and the resurrected human Siglec-17 recruit a signaling adapter and bind sialic acids. Expression of either Siglec in innate immune cells alters inflammatory cytokine secretion in response to Toll-like receptor-4 stimulation. Both Siglecs can also be engaged by two potentially lethal sialylated bacterial pathogens of newborns and infants, agents with a potential impact on reproductive fitness. Neanderthal and Denisovan genomes show human-like sequences at both loci, corroborating estimates that the initial pseudogenization events occurred in the common ancestral population of these hominins. Both loci also show limited polymorphic diversity, suggesting selection forces predating the origin of modern humans. Taken together, these data suggest that genetic elimination of Siglec-13 and/or Siglec-17 represents signatures of infectious and/or other inflammatory selective processes contributing to population restrictions during hominin origins.