2012年9月9日 讯 /生物谷BIOON/ --近日,一项刊登在国际著名杂志Molecular Microbiology上的名为“Microcolony formation by the opportunistic pathogen Pseudomonas aeruginosa requires pyruvate and pyruvate fermentation”的研究报告中,来自美国宾汉顿大学的研究者表示,致病菌绿脓杆菌微群落的形成需要丙酮酸以及丙酮酸的发酵才能完成。
绿脓杆菌,又称为铜绿假单胞菌,是一种革兰氏阴性机会致病菌,也是院内常见的致病菌,可感染免疫力低下、烧伤病人等。该菌由于产生生物被膜、发生基因突变、产生抗生素外排泵等机理,使得该菌对抗生素具有极强的耐药性,对于细菌感染的临床治疗,医生们往往使用抗生素联合疗法,但由于细菌变异较快,较容易产生耐药。
绿脓杆菌生物被膜结构产生的标志就是必须有微菌落的存在,然而目前科学家并不清楚细菌控制微菌落形成的分子机理,在铜绿假单胞菌中,微菌落的形成依赖于一种双组份调节子MifR(the two-component regulator MifR),细菌的mifR突变后,生物被膜会由于缺少微菌落而显得整体比较单薄,高表达mifR可以导致微菌落的大量形成,进而产生结构比较厚实、完整的生物被膜。
在本文研究中,研究者使用转录组学和蛋白质组学技术技术阐述了微菌落的形成和压力、氧限制直接相关,尤其是压力效应机制的激活、缺氧代谢过程尤其是丙酮酸发酵和微菌落的形成明显相关。
涉及丙酮酸盐利用的基因包括uspK、acnA以及ldhA,这些基因的不表达和mifR的失活具有同样的效果,就是使得细菌不产生微菌落。而且在培养基中通过去除丙酮酸盐也可以损伤生物被膜和微菌落的形成。外加的丙酮酸盐可以恢复微菌落和生物被膜的形成。
另外在乳酸脱氢酶(ldhA)突变体中通过添加丙酮酸盐或者表达mifR并不能够恢复细菌产生微菌落的能力,尽管通过添加额外的丙酮酸盐可以在mifR突变体中恢复微菌落形成的能力。研究者的研究结果揭示了丙酮酸盐以及丙酮酸盐的发酵或许是绿脓杆菌形成微菌落,进而形成生物被膜所必须的。(生物谷Bioon.com)
doi:10.1111/mmi.12018
PMC:
PMID:
Microcolony formation by the opportunistic pathogen Pseudomonas aeruginosa requires pyruvate and pyruvate fermentation
Olga E. Petrova1, Jill R. Schurr2, Michael J. Schurr3, Karin Sauer1,*
A hallmark of the biofilm architecture is the presence of microcolonies. However, little is known about the underlying mechanisms governing microcolony formation. In the pathogen Pseudomonas aeruginosa, microcolony formation is dependent on the two-component regulator MifR, with mifR mutant biofilms exhibiting an overall thin structure lacking microcolonies, and overexpression of mifR resulting in hyper-microcolony formation. Using global transcriptomic and proteomic approaches, we demonstrate that microcolony formation is associated with stressful, oxygen-limiting but electron-rich conditions, as indicated by the activation of stress response mechanisms and anaerobic and fermentative processes, in particular pyruvate fermentation. Inactivation of genes involved in pyruvate utilization including uspK, acnA and ldhA abrogated microcolony formation in a manner similar to mifR inactivation. Moreover, depletion of pyruvate from the growth medium impaired biofilm and microcolony formation, while addition of pyruvate significantly increased microcolony formation. Addition of pyruvate to or expression of mifR in lactate dehydrogenase (ldhA) mutant biofilms did not restore microcolony formation while addition of pyruvate partly restored microcolony formation in mifR mutant biofilms. In contrast, expression of ldhA in mifR::Mar fully restored microcolony formation by this mutant strain. Our findings indicate the fermentative utilization of pyruvate to be a microcolony-specific adaptation of the P. aeruginosa biofilm environment.