干细胞研究代表着医学研究的巨大进步。为避开伦理和法则的科学争议,部分科研人员已转向来自于个体本身的成人干细胞研究。成人干细胞现在可以来自各种组织——皮肤、骨骼甚至智齿。以色列特拉维夫大学和加利福尼亚Scripps研究所集中于此项研究,近来他们报道了一项新突破——关于识别人类组织多能性干细胞的分类系统,发表在《自然》(Nature)上。
多能性干细胞能够分化为人体发育过程中各种细胞类型,在退行性疾病药物开发及治疗中有很大潜力。一直以来,科学人员对于将皮肤细胞或其他身体细胞转化为干细胞,以生成新的大脑神经细胞很有兴趣。特拉维夫大学研究人员认为利用自身的干细胞既是伦理可以接受的,而且想特定情形下相对于胚胎干细胞能更好生成新组织。
特拉维夫大学研究人员编写新的生物信息学算法,分析数据,将各分割的内容相互联系起来,有效地描述了不同的干细胞类型及特征。在此之前,如何区分干细胞类型一直是困扰科学家的问题。研究人员Ulitzky解释称,干细胞之间有细微但又显著的差异,了解这种属性对开展研究有很大作用。Ulitzky实验室根据干细胞不同机制开发了干细胞分类的新方法。
随着干细胞领域的快速发展——包括在各种细胞中(如人类皮肤细胞)诱导多功能化的方法——如何定义多功能越来越重要。尤其对于人类细胞系来说,因为无论伦理还是科学因素是不能和其他物种同等对待的。
Scripps研究所Mueller博士表示,目前还没有伦理上可以接受的证明人类细胞的多功能性试验,尽管有些干细胞被认为是多功能的,但实际上没有进行实践试验。用150 人的干细胞当作样本,研究者建立了全基因表达谱数据库,发现所有的多能性干细胞系都具有明显的相似性,但其他细胞类型就有所不同。分析表明,一种蛋白—蛋白网络与细胞多能性相关,指出这可能是使细胞分化为多能细胞类型的一个关键因素。此外,研究者计划继续研究此蛋白网络的功能,并开展人类基因治疗。(生物谷Bioon.com)
生物谷推荐原始出处:
Nature,455, 401-405,Franz-Josef Müller,Jeanne F. Loring
Regulatory networks define phenotypic classes of human stem cell lines
Franz-Josef Müller, Louise C. Laurent, Dennis Kostka, Igor Ulitsky, Roy Williams, Christina Lu, In-Hyun Parl, Mahendra S. Rao, Ron Shamir, Philip H. Schwartz, Nils O. Schmidt & Jeanne F. Loring
Stem cells are defined as self-renewing cell populations that can differentiate into multiple distinct cell types. However, hundreds of different human cell lines from embryonic, fetal and adult sources have been called stem cells, even though they range from pluripotent cells—typified by embryonic stem cells, which are capable of virtually unlimited proliferation and differentiation—to adult stem cell lines, which can generate a far more limited repertoire of differentiated cell types. The rapid increase in reports of new sources of stem cells and their anticipated value to regenerative medicine1, 2 has highlighted the need for a general, reproducible method for classification of these cells3. We report here the creation and analysis of a database of global gene expression profiles (which we call the 'stem cell matrix') that enables the classification of cultured human stem cells in the context of a wide variety of pluripotent, multipotent and differentiated cell types. Using an unsupervised clustering method4, 5 to categorize a collection of 150 cell samples, we discovered that pluripotent stem cell lines group together, whereas other cell types, including brain-derived neural stem cell lines, are very diverse. Using further bioinformatic analysis6 we uncovered a protein–protein network (PluriNet) that is shared by the pluripotent cells (embryonic stem cells, embryonal carcinomas and induced pluripotent cells). Analysis of published data showed that the PluriNet seems to be a common characteristic of pluripotent cells, including mouse embryonic stem and induced pluripotent cells and human oocytes. Our results offer a new strategy for classifying stem cells and support the idea that pluripotency and self-renewal are under tight control by specific molecular networks.