来自美国和英国的科学家发明了一种测量活体细胞机械性能的技术,该技术能够用来诊断人类疾病并且更好地理解生物过程。相关研究发表在《自然—纳米技术》杂志上。
研究人员使用原子力显微镜(atomic force microscope, AFM)观测三种不同的细胞,来说明该技术的广泛应用。比如,该技术可以研究细胞如何黏着在组织上、细胞如何运动和变形、癌细胞在转移时如何进化以及细胞如何应对机械刺激。由于AFM比光学显微镜分辨率高,因此AFM是唯一可用来绘制细胞机械性能特征图谱的工具。但是,传统技术利用AFM绘制图谱时,不是速度慢就是分辨率低。而新技术通过完善光学过程,其测量速度提高了五倍。
研究论文作者之一Sonia Contera表示:“人们对细胞生物学中的力学作用认识正在加强,并且事实上有很多工作正在建立模型来解释在健康和疾病组织中,细胞是如何机械地感知、反应和交流的。本研究为解决这些问题提供了一个工具。这是一大进步。”(生物谷 Bioon.com)
doi:10.1038/nnano.2011.186
PMC:
PMID:
Mapping nanomechanical properties of live cells using multi-harmonic atomic force microscopy
A. Raman,S. Trigueros,A. Cartagena, A. P. Z. Stevenson,M. Susilo,E. Nauman & S. Antoranz Contera
The nanomechanical properties of living cells, such as their surface elastic response and adhesion, have important roles in cellular processes such as morphogenesis, mechano-transduction, focal adhesion, motility, metastasis6 and drug delivery Techniques based on quasi-static atomic force microscopy techniques can map these properties, but they lack the spatial and temporal resolution that is needed to observe many of the relevant details. Here, we present a dynamic atomic force microscopy method to map quantitatively the nanomechanical properties of live cells with a throughput (measured in pixels/minute) that is ~10–1,000 times higher than that achieved with quasi-static atomic force microscopy techniques. The local properties of a cell are derived from the 0th, 1st and 2nd harmonic components of the Fourier spectrum of the AFM cantilevers interacting with the cell surface. Local stiffness, stiffness gradient and the viscoelastic dissipation of live Escherichia coli bacteria, rat fibroblasts and human red blood cells were all mapped in buffer solutions. Our method is compatible with commercial atomic force microscopes and could be used to analyse mechanical changes in tumours, cells and biofilm formation with sub-10 nm detail.