近日,伦敦大学一科学小组最新发表在《公共科学图书馆·病原学》(Plos Pathogens)期刊上的论文称,他们发现了艾滋病病毒进入细胞核,进而破坏人体免疫系统引发艾滋病的关键机理。这一发现为科学家提供了更有效对抗艾滋病病毒的新标靶,为未来艾滋病的治疗带来了新希望。
艾滋病病毒通过体液,主要是血液和精液传播。病毒一旦进入血液,会感染包括巨噬细胞在内的免疫系统关键部件。病毒会进入巨噬细胞的细胞核,与巨噬细胞的DNA(脱氧核糖核酸)结合,自行复制并扩散到全身各处。艾滋病病毒要进入到细胞核内,必须通过核孔复合体(NPC),这也是病毒通往细胞核的大门。但到目前为止,艾滋病病毒是如何通过核孔复合体的,其机制尚不得而知。
包括英国伦敦大学学院研究人员在内的一研究小组研究发现,艾滋病病毒衣壳会与细胞核孔复合体上的Nup358蛋白绑定,进而让病毒进入细胞核,与DNA结合。这个衣壳蛋白就如同一把钥匙,打开了核孔复合体这把锁,使得艾滋病病毒最终“破门而入”。
论文第一作者、伦敦大学学院的托尔斯滕·夏勒博士指出,过去几乎所有的艾滋病治疗都是瞄准病毒本身,但艾滋病病毒很容易发展变化,从而对药物影响免疫,使药物无效。这一新研究表明,瞄准宿主体内蛋白而不是病毒本身会更加有效。如果能够设计出一种药物,其标靶是蛋白,就会起到阻止病毒进化的效果。
领导该项研究的伦敦大学学院格雷格·托尔斯教授指出,对于艾滋病的治疗来说,能够领先一步来开发出新的治疗策略非常重要。艾滋病发现以来,虽然科学家在治疗艾滋病病毒感染的抗逆转录病毒药物的研究开发上已经取得了巨大的进步,但病毒对这些药物的抵抗力也变得越来越强,使得该疾病的治疗依然难有成效。在新研究中,科学家发现了允许艾滋病病毒进入细胞核的“锁和钥匙”。病毒一旦进入细胞核,就可以开始进行自我复制,然后几乎是毫不受限制地在体内扩散。如果能够使用药物阻断病毒进入细胞核的路径,就能够阻止病毒在体内的扩散,这将是一种对抗艾滋病病毒的新方法。(生物谷Bioon.com)
>>延伸阅读:Nature Medicine:新方法可杀灭潜在艾滋病病毒
>>延伸阅读:艾滋病病毒破坏人体免疫系统研究新发现
>>延伸阅读:Cell Stem Cell:艾滋病病毒会抑制大脑干细胞生成新细胞
>>延伸阅读:Nature Medicine:移植基因方法可有效抑制艾滋病病毒
>>延伸阅读:Science:可积极控制艾滋病病毒的干细胞疗法及三种新抗体
doi:10.1371/journal.ppat.1002439
PMC:
PMID:
HIV-1 Capsid-Cyclophilin Interactions Determine Nuclear Import Pathway, Integration Targeting and Replication Efficiency
Torsten Schaller, Karen E. Ocwieja, Jane Rasaiyaah, Amanda J. Price, Troy L. Brady, Shoshannah L. Roth, Stéphane Hué, Adam J. Fletcher, KyeongEun Lee, Vineet N. KewalRamani, Mahdad Noursadeghi, Richard G. Jenner, Leo C. James, Frederic D. Bushman, Greg J. Towers
Lentiviruses such as HIV-1 traverse nuclear pore complexes (NPC) and infect terminally differentiated non-dividing cells, but how they do this is unclear. The cytoplasmic NPC protein Nup358/RanBP2 was identified as an HIV-1 co-factor in previous studies. Here we report that HIV-1 capsid (CA) binds directly to the cyclophilin domain of Nup358/RanBP2. Fusion of the Nup358/RanBP2 cyclophilin (Cyp) domain to the tripartite motif of TRIM5 created a novel inhibitor of HIV-1 replication, consistent with an interaction in vivo. In contrast to CypA binding to HIV-1 CA, Nup358 binding is insensitive to inhibition with cyclosporine, allowing contributions from CypA and Nup358 to be distinguished. Inhibition of CypA reduced dependence on Nup358 and the nuclear basket protein Nup153, suggesting that CypA regulates the choice of the nuclear import machinery that is engaged by the virus. HIV-1 cyclophilin-binding mutants CA G89V and P90A favored integration in genomic regions with a higher density of transcription units and associated features than wild type virus. Integration preference of wild type virus in the presence of cyclosporine was similarly altered to regions of higher transcription density. In contrast, HIV-1 CA alterations in another patch on the capsid surface that render the virus less sensitive to Nup358 or TRN-SR2 depletion (CA N74D, N57A) resulted in integration in genomic regions sparse in transcription units. Both groups of CA mutants are impaired in replication in HeLa cells and human monocyte derived macrophages. Our findings link HIV-1 engagement of cyclophilins with both integration targeting and replication efficiency and provide insight into the conservation of viral cyclophilin recruitment.