1月16日,据美国物理学家组织网报道,5亿多年前,地球表面的单细胞生物开始形成多细胞簇,最终变成了植物和动物。美国明尼苏达大学研究人员在实验室用普通的啤酒酵母菌复制了这一关键进化步骤,演示了这一过渡的发生过程。相关论文发表在近期出版的美国《国家科学院院刊》上。
研究人员将啤酒酵母菌加入到培养基中,在试管内生长了一天,然后用离心机搅动使试管中的成份分层。当混合物稳定下来,细胞簇会更快地落在试管底部,因为它们最重。研究人员把这些细胞簇取出来,转移到新的培养基中,然后再次搅动它们。六轮循环后,细胞簇已经包含了几百个细胞,看起来就像球形的雪花。
酵母菌“进化”成了多细胞簇,能协同合作、繁殖并改变它们的环境,基本上变成了今天地球生命的初期形式。分析显示,细胞簇并不是随机粘在一起的细胞群,而是互相关联的,它们随着细胞分裂而保持连接。这表示它们具有遗传相似性以促进合作。当细胞簇达到临界大小时,一些细胞就会进入凋亡过程而死亡,将后代细胞分隔开来。而后代细胞簇的繁殖扩展也只能到达它们“父母”所达到的大小。“这种劳动分工进化得非常快,以雪花状集簇的形式不断繁殖。”国家科学基金会环境生物学分部代理副主管乔治·吉尔克利斯特说,“通向多细胞复合体的第一步,好像并没有理论认为的那么艰巨。”
“一个细胞簇还不能称为多细胞体,只有当其中的细胞开始合作,自我牺牲以达成公共利益并能适应变化,这就是向多细胞体进化的一种过渡。” 论文作者之一、明尼苏达州立大学科学家威尔·拉特克利夫解释说,要形成多细胞生物,大部分细胞要牺牲它们的繁殖能力,这是一种有利整体却不利于个体的行为。比如人体的几乎所有细胞从本质上说就是一个支持系统,只有精子和卵子负责把DNA传到下一代。所以多细胞体是由其合作性来定义的。
进化生物学家们估计,这种多细胞体独立地进化成了25个体系,将来通过对比多细胞簇留下来的化石,可进一步揭示每个体系中相应的发展机制和基因异同。
新实验方法可用于对许多医疗和生物重要课题的研究,比如多细胞体在癌症、老化及其他生物学关键领域中的功能。论文合著者、明尼苏达大学的迈克尔·特拉维萨诺说,最近有人提出,癌症是一种源自最初的多细胞体的化石,而老化的起源也与此类似,通过多细胞酵母菌可以直接对此进行研究。(生物谷 Bioon.com)
doi:10.1073/pnas.1115323109
PMC:
PMID:
Experimental evolution of multicellularity
William C. Ratcliff, R. Ford Denison, Mark Borrello, and Michael Travisano
Multicellularity was one of the most significant innovations in the history of life, but its initial evolution remains poorly understood. Using experimental evolution, we show that key steps in this transition could have occurred quickly. We subjected the unicellular yeast Saccharomyces cerevisiae to an environment in which we expected multicellularity to be adaptive. We observed the rapid evolution of clustering genotypes that display a novel multicellular life history characterized by reproduction via multicellular propagules, a juvenile phase, and determinate growth. The multicellular clusters are uniclonal, minimizing within-cluster genetic conflicts of interest. Simple among-cell division of labor rapidly evolved. Early multicellular strains were composed of physiologically similar cells, but these subsequently evolved higher rates of programmed cell death (apoptosis), an adaptation that increases propagule production. These results show that key aspects of multicellular complexity, a subject of central importance to biology, can readily evolve from unicellular eukaryotes.