近日,国际知名学术期刊《欧洲分子生物学学会会刊》(The EMBO Journal)在线刊登了上海生科院生化与细胞所刘默芳研究组、王恩多研究组关于miR-155/miR-143介导炎症促进肿瘤细胞糖代谢的最新研究成果。该工作与中山医院张宏伟教授、瑞金医院李彪教授、美国路易斯维尔大学李勇教授、中科院上海生命科学信息中心李党生研究员等合作完成。
区别于正常细胞,肿瘤细胞即使在有氧条件下,也主要通过糖酵解方式分解葡萄糖获能,而非通过三羧酸循环和氧化磷酸化途径生产ATP,肿瘤细胞的这种有氧糖酵解现象被称为Warburg效应。Warburg效应对肿瘤微环境形成和维持、肿瘤细胞增殖、抗凋亡和转移等至关重要。慢性炎症和感染是肿瘤发生的一个重要诱因,已发现炎症信号参与调控肿瘤发生发展的各个步骤,但目前对促癌性炎症与Warburg效应之间是否有关联还知之甚少。
刘默芳研究组蒋帅博士和助理实验师张凌飞等发现,促炎细胞因子(如IL-6、TNFa、IL-1b和IFN-g等)可在乳腺癌细胞中促进糖酵解、调控Warburg效应。有趣的是,继发现miR-155作用为炎症-肿瘤发生之间的桥梁分子后,该工作发现miR-155也可以作为炎症-肿瘤细胞能量代谢之间的关键中转信号分子。机制上,miR-155从两个层面上调了Warburg效应中的一个关键糖代谢酶基因--己糖激酶II(hexokinase 2, hk2)的表达:一方面,miR-155通过激活转录因子STAT3促进hk2的转录;另外一方面,miR-155通过靶向C/EBPb抑制miR-143的表达,在转录后水平解除了miR-143对靶基因hk2的抑制,保证了HK2蛋白的表达。更为重要的是,这种miR-155介导的双通路hk2上调机制也存在于其它癌细胞中,可能是联系炎症-肿瘤细胞能量代谢的普遍机制。该工作揭示了炎症信号通路参与调控肿瘤细胞能量代谢的新机理,对了解炎症相关肿瘤的发生机制具有重要意义。
该项研究工作得到了国家科技部、国家基金委、中国科学院及上海市科委的资助。(生物谷Bioon.com)
doi:10.1038/emboj.2012.45
PMC:
PMID:
A novel miR-155/miR-143 cascade controls glycolysis by regulating hexokinase 2 in breast cancer cells
Shuai Jiang1,2,3,8, Ling-Fei Zhang1,2,3,8, Hong-Wei Zhang4, Song Hu1,2,3, Ming-Hua Lu1,2,3, Sheng Liang5, Biao Li5, Yong Li6, Dangsheng Li7, En-Duo Wang1,3 and Mo-Fang Liu1,2,3
Cancer cells preferentially metabolize glucose through aerobic glycolysis. This phenomenon, known as the Warburg effect, is an anomalous characteristic of glucose metabolism in cancer cells. Chronic inflammation is a key promoting factor of tumourigenesis. It remains, however, largely unexplored whether and how pro-tumourigenic inflammation regulates glucose metabolism in cancer cells. Here, we show that pro-inflammatory cytokines promote glycolysis in breast cancer cells, and that the inflammation-induced miR-155 functions as an important mediator in this process. We further show that miR-155 acts to upregulate hexokinase 2 (hk2), through two distinct mechanisms. First, miR-155 promotes hk2 transcription by activation of signal transducer and activator of transcription 3 (STAT3), a transcriptional activator for hk2. Second, via targeting C/EBPβ (a transcriptional activator for mir-143), miR-155 represses mir-143, a negative regulator of hk2, thus resulting in upregulation of hk2 expression at the post-transcriptional level. The miR-155-mediated hk2 upregulation also appears to operate in other types of cancer cells examined. We suggest that the miR-155/miR-143/HK2 axis may represent a common mechanism linking inflammation to the altered metabolism in cancer cells.