近日,国际著名杂志Biochemical Journal 在线刊登了了上海生科院生化与细胞所王恩多课题组的最新研究成果“A naturally occurring nonapeptide functionally compensates the CP1 domain of leucyl-tRNA synthetase to modulate aminoacylation activity”,文章中,研究者在运动型支原体无编校结构域的LeuRS的催化机理获得了进展。
氨基酰tRNA合成酶(aaRS)是蛋白质翻译系统的重要组成部分,其主要负责为蛋白质的生物合成提供原料:氨基酰-tRNA。aaRS反应的精确性对正确翻译遗传信息致关重要。亮氨酰-tRNA合成酶(LeuRS)在进化过程中募集了插入合成氨基酰-tRNA活性中心的一个编校结构域(Connective peptide, CP1),在该结构域内生成的错误氨基酰-tRNA被水解,从而保证催化反应的专一性。目前已知的LeuRS中只有来自运动型支原体(Mycoplasma mobile)的LeuRS(MmLeuRS)无CP1,而代之以含有九个氨基酸残基的九肽(MmLinker)。
王恩多研究组的谭敏博士和博士研究生闫卫等发现,MmLeuRS缺失了依赖tRNA的编校功能;MmLinker对MmLeuRS的氨基酰化活力致关重要,它可以功能性地代偿其它物种LeuRS的CP1在氨基酰化反应中的作用。来自大肠杆菌的LeuRS的CP1(EcCP1)可以在MmLeuRS中代替MmLinker发挥作用,EcCP1融合进MmLeuRS可赋予MmLeuRS转移后编校活力来维持催化反应的专一性。通过无CP1的MmLeuRS的研究发现:LeuRS的转移前编校活力是在合成氨基酰-tRNA的结构域进行的。
该论文为aaRS的模块融合进化假说提供了直接的证据,同时也为LeuRS转移前编校的分子机制的研究提供了线索。
该项研究工作得到了国家科技部、国家基金委、中国科学院的资助。(生物谷Bioon.com)
doi:10.1042/BJ20111925
PMC:
PMID:
A naturally occurring nonapeptide functionally compensates the CP1 domain of leucyl-tRNA synthetase to modulate aminoacylation activity
Min Tan, Wei Yan, Ru-Juan Liu, Meng Wang, Xin Chen, Xiao-Long Zhou and En-Duo Wang
Aminoacyl-tRNA synthetases (aaRSs) establish the rules of the genetic code by catalyzing the formation of aminoacyl-tRNA. The quality control for aminoacylation reaction is achieved by editing activity, which is usually carried out by a discrete editing domain. For leucyl-tRNA synthetase (LeuRS), the connective peptide 1 (CP1) domain is the editing domain responsible for hydrolyzing mis-charged tRNA. The CP1 domain is universally present in LeuRSs except LeuRS from Mycoplasma mobile (MmLeuRS). The substitute of CP1 in MmLeuRS is a nonapeptide (MmLinker). We show here that the MmLinker, which is critical for aminoacylation activity of MmLeuRS, could confer remarkable tRNA charging activity to the inactive CP1-deleted LeuRS from Escherichia coli (EcLeuRS) and Aquifex aeolicus (AaLeuRS). Furthermore, CP1 from EcLeuRS could functionally compensate the MmLinker and endow MmLeuRS with post-transfer editing capability. These investigations provide a mechanistic framework for the modular construction of aaRSs and their coordination to achieve catalytic efficiency and fidelity. These results also show that the pre-transfer editing function of LeuRS originates from its conserved synthetic domain, and shed light on future mechanism study.