2012年9月8日 讯 /生物谷BIOON/ --来自美国加州大学洛杉矶分校的干细胞研究人员证实两种常见性的肿瘤抑制基因TSC和PTEN在调节提供果蝇体内血液供应的干细胞样前体细胞(stem cell-like precursor cell)中发挥着至关重要的作用。论文通信作者Julian A. Martinez-Agosto博士说,研究人员研究了这些前体细胞利用TOR信号通路来测量营养水平和压力。
Martinez-Agosto说,“我们想知道一种有机体在它的组织受伤和修复过程中制造多少细胞和何时制造它们。特别地,我们想知道这些血前体细胞如何检测这种变化和何时是制造更多血细胞的时间。我们发现这种TOR通路利用这两种基因来调节它的功能,当被激活时,它增加果蝇血液中血前体细胞的数量。”
这项研究于2012年9月5日在线发表在同行评审的Development期刊上。论文第一作者Michelle Dragojlovic-Munther发现TOR活性增加的前体细胞具有竞争优势,从而允许它们分裂并制造更多的自己,因此它们能够制造血液。Dragojlovic-Munther发现这些前体细胞还具有高水平的活性。活性氧是包括自由基在内的离子或非常小的分子,而且它们能够伤害细胞和让人容易衰老和患上心脏病。但是在这项研究中,活性氧是有价值的。
Martinez-Agosto说,这些前体细胞一直在产生活性氧,而且当TOR被激活时,活性氧水平显著性地增加。太多的活性氧导致它们比平常时发生更加多的分裂。如果他们利用降低活性氧水平的抗氧化剂处理果蝇,那么这些细胞将正常发育。
这些研究发现可能是重要的,这是因为TOR通路在很多癌症中被异常地激活,而且它可能靶向ROS水平,从而可能有助于调节这种通路。
Martinez-Agosto补充道,特异性靶向的抗氧化剂可能是一小部分血液疾病的潜在治疗方法,“这项研究可能告诉我们的就是太多的活性氧导致更多的细胞发生分裂,并且我们可能能够靶向降低活性氧的疗法从而显著性地改善疾病。有时,这种通路过分活跃,因而我们需要合适的活性氧含量来加以平衡。这就是不能太少,也不能太多。我们仅需要的就是刚刚合适。”
研究人员在研究中陈述道,“这项研究着重强调了TSC和PTEN在TOR功能上的机制上差异,并且证实一种检测营养的通路通过调节活性氧水平而在协调髓系特异性的血前体细胞的增殖和分化中发挥着多种作用,而且当这种调节被解除时,它会导致骨髓增生性疾病。”(生物谷Bioon.com)
doi: 10.1242/dev.074203
PMC:
PMID:
Multifaceted roles of PTEN and TSC orchestrate growth and differentiation of Drosophila blood progenitors
Michelle Dragojlovic-Munther and Julian A. Martinez-Agosto
The innate plasticity of hematopoietic progenitors is tightly regulated to supply blood cells during normal hematopoiesis and in response to stress or infection. We demonstrate that in the Drosophila lymph gland (LG) the tumor suppressors TSC and PTEN control blood progenitor proliferation through a common TOR- and 4EBP-dependent pathway. Tsc2 or Pten deficiency in progenitors increases TOR signaling and causes LG overgrowth by increasing the number of actively dividing cells that accumulate high levels of phosphorylated (p) 4EBP during a critical window of growth. These phenotypes are associated with increased reactive oxygen species (ROS) levels in the LG, and scavenging ROS in progenitors is sufficient to rescue overgrowth. Blood progenitor number is also sensitive to starvation and hypoxia in a TOR-dependent manner. Differences between Tsc1/2 and Pten function become apparent at later stages. Loss of Tsc1/2 autonomously increases p4EBP and decreases pAKT levels, expands the number of intermediate progenitors and limits terminal differentiation, except for a late induction of lamellocytes. By contrast, absence of PTEN increases p4EBP and pAKT levels and induces myeloproliferative expansion of plasmatocytes and crystal cells. This increased malignancy is associated with non-autonomous increases in p4EBP levels within peripheral differentiating hemocytes, culminating in their premature release into circulation and demonstrating potential non-autonomous effects of Pten dysfunction on malignancy. This study highlights mechanistic differences between TSC and PTEN on TOR function and demonstrates the multifaceted roles of a nutrient-sensing pathway in orchestrating proliferation and differentiation of myeloid-specific blood progenitors through regulation of ROS levels and the resulting myeloproliferative disorder when dysregulated.