2012年9月8日 讯 /生物谷BIOON/ --来自美国弗吉尼亚理工大学和德州大学西南医学中心的研究人员发现,微小的RNA链(microRNA, miRNA)影响我们的细胞如何燃烧脂肪和糖。这一发现为生物学家们开始寻找治疗肥胖症和相关的健康问题打下基础。
根据这周发表在PNAS期刊上的一项研究,当两种miRNA从小鼠的遗传物质中缺失时,依赖高脂肪饮食的小鼠抵抗肥胖。这项发现提示着靶向这两种特异性的miRNA的治疗方法可能有助于抑制肥胖流行症。
一度被认为是垃圾DNA,研究人员如今知道miRNA在基因如何影响人类健康和行为方面发挥着重要作用。它们已知与心脏病、糖尿病、丙型肝炎、淋巴瘤和乳腺癌相关联。尽管之前已知miRNA与肥胖者相关联,但是这些新的发现是第一次确定miRNA和细胞代谢之间存在关联。
德州大学西南医学中心研究人员对小鼠进行基因改造而不能产生miR-378和它的表亲miR-378*,从而导致相对苗条的动物也能够快速地将细胞食物转化为能量。
论文通信作者Eric N. Olson博士说,“我们不知道这两个miRNA的功能,但是我们感兴趣的是,它们来源自与代谢相关的一个基因,而且它们在多种组织中表达,如肌肉、脂肪组织和肝脏。当我们对小鼠进行基因改造以致于它们丢失这些miRNA,它就允许这些小鼠的细胞比未经过处理的同窝仔畜燃烧更多的能量和拥有更大的肥胖抵抗能力。这两个miRNA似乎作为代谢的关键性调节物而发挥功能,这提示着开发旨在抑制它们的药物将具有抵抗肥胖的积极影响。”
Olson实验室研究了miRNA变化对不同疾病的影响,如心脏病和也被称作路格里克氏病(Lou Gehrig's disease)的肌肉萎缩性侧索硬化症(amyotrophic lateral sclerosis)。
在当前的研究中,弗吉尼亚理工大学研究人员从肝脏和骨骼肌中分离出线粒体。当测量线粒体利用脂肪时,他们发现一种释放能量的氧化过程的活性增加,这就佐证这种发现:小鼠体内miRNA缺失导致能量开销增加,并且抵抗肥胖,即便是给小鼠喂食高脂肪饮食时,也是如此。(生物谷Bioon.com)
doi: 10.1073/pnas.1207605109
PMC:
PMID:
Control of mitochondrial metabolism and systemic energy homeostasis by microRNAs 378 and 378*
Michele Carrera, Ning Liua, Chad E. Gruetera, Andrew H. Williamsa,1, Madlyn I. Frisardb, Matthew W. Hulverb, Rhonda Bassel-Dubya, and Eric N. Olson
Obesity and metabolic syndrome are associated with mitochondrial dysfunction and deranged regulation of metabolic genes. Peroxisome proliferator-activated receptor γ coactivator 1β (PGC-1β) is a transcriptional coactivator that regulates metabolism and mitochondrial biogenesis through stimulation of nuclear hormone receptors and other transcription factors. We report that the PGC-1β gene encodes two microRNAs (miRNAs), miR-378 and miR-378*, which counterbalance the metabolic actions of PGC-1β. Mice genetically lacking miR-378 and miR-378* are resistant to high-fat diet-induced obesity and exhibit enhanced mitochondrial fatty acid metabolism and elevated oxidative capacity of insulin-target tissues. Among the many targets of these miRNAs, carnitine O-acetyltransferase, a mitochondrial enzyme involved in fatty acid metabolism, and MED13, a component of the Mediator complex that controls nuclear hormone receptor activity, are repressed by miR-378 and miR-378*, respectively, and are elevated in the livers of miR-378/378* KO mice. Consistent with these targets as contributors to the metabolic actions of miR-378 and miR-378*, previous studies have implicated carnitine O-acetyltransferase and MED13 in metabolic syndrome and obesity. Our findings identify miR-378 and miR-378* as integral components of a regulatory circuit that functions under conditions of metabolic stress to control systemic energy homeostasis and the overall oxidative capacity of insulin target tissues. Thus, these miRNAs provide potential targets for pharmacologic intervention in obesity and metabolic syndrome.