2012年10月9日 讯 /生物谷BIOON/ --来自美国希达-西奈医学院马克辛-多尼兹神经外科研究所(Cedars-Sinai's Maxine Dunitz Neurosurgical Institute)的研究人员发现一种血管形成基因促进人骨髓干细胞能够持续修复胰岛素依赖性糖尿病小鼠模式动物的受损胰腺。相关研究发表在PLoS ONE期刊上。
这些发现为人们理解胰岛素产生细胞(insulin-producing cell)的再生机制提供新的深入认识和,同时提供新的证据表明有朝一日可能利用糖尿病患者自己的骨髓来治疗疾病。
十年前,科学家们就开始研究利用骨髓干细胞来再生胰腺。最近的研究涉及利用几个胰腺小鼠相关的基因和被称作“移植到胰腺或注射到血液中”的递送方法,这些研究在一些实验室小鼠体内已证实骨髓干细胞疗法能够逆转或改善糖尿病病情。但是很少有人知道干细胞如何影响胰岛β细胞---即产生胰岛素的胰腺细胞---或者科学家们如何能够促进β细胞持续更新和胰岛素持续产生。
当来自希达-西奈医学院马克辛·多尼兹神经外科研究所的研究人员对骨髓干细胞进行基因修饰让它们表达一种编码血管内皮生长因子(vascular endothelial growth factor, VEGF)的基因时,小鼠胰腺能够再生新的β细胞,因而能够持续修复胰腺。这种经过VEGF基因修饰的干细胞促进所需的血管生长和辅助激活涉及胰岛素产生的基因。然而,经过另一个不同基因PDX1修饰的骨髓干细胞只能暂时产生β细胞,但不能持续地产生β细胞。基因PDX1在β细胞的发育和维持中发生着重要的作用。
论文通信作者John S. Yu博士说,“我们的研究是第一次证实在胰腺损伤之后,VEGF导致血管再生和复原。它证明利用经过基因修饰表达基因VEGF的骨髓干细胞在治疗胰岛素依赖性糖尿病中可能具有临床益处。”
在当前这项为期6周的研究中,研究人员发现在9只接受经过基因VEGF修饰的骨髓干细胞注射的小鼠中,有5只小鼠的糖尿病病情得到逆转,而且在剩下的研究时间中,这5只小鼠的血糖将近恢复到正常的水平。其他的4只小鼠存活下来,并且体重增加,这就表明即便不能完全促进病情逆转,这种治疗也是有益的。实验室研究随后证实这种经过基因修饰的骨髓干细胞在胰腺中存活和生长,并且支持血管和β细胞再生。
不过,研究人员提醒道,尽管这项研究和其他相关的研究有助于科学家们更好地理解涉及胰腺再生的过程和途径,但是在人类临床试验能够开始之前,还需开展更多的研究。(生物谷Bioon.com)
doi: 10.1371/journal.pone.0042177
PMC:
PMID:
β-Cell Regeneration Mediated by Human Bone Marrow Mesenchymal Stem Cells
Anna Milanesi1,2, Jang-Won Lee3, Zhenhua Li3, Stefano Da Sacco4, Valentina Villani4, Vanessa Cervantes3, Laura Perin4, John S. Yu
Bone marrow mesenchymal stem cells (BMSCs) have been shown to ameliorate diabetes in animal models. The mechanism, however, remains largely unknown. An unanswered question is whether BMSCs are able to differentiate into β-cells in vivo, or whether BMSCs are able to mediate recovery and/or regeneration of endogenous β-cells. Here we examined these questions by testing the ability of hBMSCs genetically modified to transiently express vascular endothelial growth factor (VEGF) or pancreatic-duodenal homeobox 1 (PDX1) to reverse diabetes and whether these cells were differentiated into β-cells or mediated recovery through alternative mechanisms. Human BMSCs expressing VEGF and PDX1 reversed hyperglycemia in more than half of the diabetic mice and induced overall improved survival and weight maintenance in all mice. Recovery was sustained only in the mice treated with hBMSCs-VEGF. However, de novo β-cell differentiation from human cells was observed in mice in both cases, treated with either hBMSCs-VEGF or hBMSCs- PDX1, confirmed by detectable level of serum human insulin. Sustained reversion of diabetes mediated by hBMSCs-VEGF was secondary to endogenous β-cell regeneration and correlated with activation of the insulin/IGF receptor signaling pathway involved in maintaining β-cell mass and function. Our study demonstrated the possible benefit of hBMSCs for the treatment of insulin-dependent diabetes and gives new insight into the mechanism of β-cell recovery after injury mediated by hBMSC therapy.