干细胞具有在体外大量增殖和分化为多种细胞的潜能,可为再生医学的替代疗法提供充足的细胞来源。2006年以来,日美科学家利用病毒载体转染不同转录因子(Oct4, Sox2, Klf4, c-Myc等),成功将体细胞重编程为诱导多能干细胞(iPS)。iPS细胞具有和胚胎干细胞类似的功能,却绕开了胚胎干细胞研究一直面临的伦理和法律等诸多障碍,因此在医疗领域的应用前景非常广阔。然而病毒载体及原癌基因的应用使iPS的安全性受到质疑;而且iPS的诱导效率也有待进一步提高。因此科学家们一直致力于寻找新的方法来减少转录因子的数量、避免转录因子的整合并提高的重编程效率。
10月9日,Cell Research在线发表了同济大学和中科院上海药物所/国家新药筛选中心关于小分子化合物提高iPS诱导效率的最新研究结果。博士研究生许新秀、王荃等在筛选化合物时无意中发现位于96孔板边缘的孔中的iPS诱导效率高于中间的孔。多孔板的边缘效应经常可以在高通量筛选体系中观察到,主要是因为边缘孔的液体蒸发更强,从而导致边缘孔的渗透压提高,pH及营养状况变化。我们模拟了这几种情况,发现渗透压的提高可以明显提高iPS诱导效率。高渗条件能提高四因子诱导效率10倍,使重编程效率接近25%。在两因子(OK, OS)或一因子(O)体系中,高渗条件也能提高诱导效率3~5倍。高渗能够激活体细胞中的三条MAPK(ERK, JNK, p38)通路,但只有当p38的激活被抑制时,高渗所提高的重编程效率才会被抑制。利用其他化合物短时激活p38或过表达组成性活性的p38均可提高iPS诱导效率,相反过表达显性负性突变体可抑制重编程效率。P38的激活被普遍认为是促进细胞分化的,为何会提高重编程效率呢?进一步研究发现p38的激活可以在整体上降低DNA甲基化程度,使细胞处于一种不稳定的中间状态,随着重编程因子的导入或分化信号的出现,就可以更容易地被重编程回多能状态或分化。环境应激一直是生物进化的有力推动因素,我们的研究显示了在应激条件下,细胞的表观遗传状态及基因转录水平发生变化,从而有利于细胞命运的改变。
本研究工作是在谢欣研究员指导下完成。谢欣研究员是中科院上海药物研究所课题组长,国家新药筛选中心副主任,同济大学生命科学与技术学院兼职教授,博士生导师。主要从事基于GPCR的新药发现及机制研究,以及小分子化合物调控干细胞命运的研究。研究组在去年报道老药LiCl可以极大提高iPS的诱导效率 (Cell Research, 2011; 21(10):1424-35)。本研究工作得到中科院干细胞先导专项,科技部重大科学研究计划及上海市科委的支持。(生物谷Bioon.com)
doi: 10.1038/cr.2012.143
PMC:
PMID:
Stress-mediated p38 activation promotes somatic cell reprogramming
Xinxiu Xu, Quan Wang, Yuan Long, Ru Zhang, Xiaoyuan Wei, Mingzhe Xing, Haifeng Gu and Xin Xie
Environmental stress-mediated adaptation plays essential roles in the evolution of life. Cellular adaptation mechanisms usually involve the regulation of chromatin structure, transcription, mRNA stability and translation, which eventually lead to efficient changes in gene expression. Global epigenetic change is also involved in the reprogramming of somatic cells into induced pluripotent stem (iPS) cells by defined factors. Here we report that environmental stress such as hyperosmosis not only facilitates four factor-mediated reprogramming, but also enhances two or one factor-induced iPS cell generation. Hyperosmosis-induced p38 activation plays a critical role in this process. Constitutive active p38 mimics the positive effect of hyperosmosis, while dominant negative p38 and p38 inhibitor block the effect of hyperosmosis. Further study indicates stress-mediated p38 activation may promote reprogramming by reducing the global DNA methylation level and enhancing the expression of pluripotency genes. Our results demonstrate how simple environmental stress like hyperosmosis helps to alter the fate of cells via intracellular signaling and epigenetic modulation.