近日来自中科院遗传与发育生物学研究所、湖北大学的研究人员在阿尔茨海默氏症研究中取得重要进展,他们在果蝇中发现HDAC6突变可挽救人类tau诱导的微管缺陷。相关论文“HDAC6 mutations rescue human tau-induced microtubule defects in Drosophila”发表在3月4日的《美国科学院院刊》(PNAS)上。
领导这一研究的是中科院遗传与发育生物学研究所的张永清(Yong Q-Zhang)研究员。其主要研究方向是利用传统的模式动物果蝇进行神经生物学的基础应用研究。张永清研究组博士研究生熊英为第一作者,该研究得到了中科院和国家自然科学基金委的资助。
阿尔茨海默氏症
阿尔茨海默氏症(AD)即我们常说的老年痴呆症。在65岁以上的人群中,大约10%患有阿尔茨海默氏症,这也让此病成为最常见的神经退行性疾病。随着社会人口的老龄化,其发病率呈上升趋势,但目前却没有准确诊断和有效治疗的方法。阿尔茨海默氏症的神经病理学标志包括神经元减少,以及神经纤维缠结和老年斑的出现。神经纤维缠结是神经内包涵体,早在80年代Tau蛋白就被证明是神经纤维缠结的主要构成部分,2010年该蛋白的基因被证实是帕金森氏症的主要危险基因之一。
Tau蛋白是一种分布在中枢神经系统内的低分子量含磷糖蛋白,它能与神经轴突内的微管结合,具有诱导与促进微管蛋白聚合成微管,防止微管解聚、维持微管功能的稳定的的功能。对记忆和正常大脑功能起重要的作用。然而,在阿尔茨海默氏症和其他神经退行性疾病中,tau蛋白不仅不再发挥正常功能,还会转变为破坏脑细胞的“恶棍”因子。此时,tau蛋白发生异常磷酸化或糖基化以及泛素蛋白化时,tau蛋白会失去对微管的稳定作用,导致神经纤维退化,功能丧失。
当前,人们将紫杉酚(paclitaxel)和埃坡霉素D(epothilone D)等微管稳定药物视作是AD及相关Tau病可能的治疗方法。然而这些微管稳定药物会导致如神经病变和中性粒细胞减少等一些常见副作用。
为了发现能够抑制tau诱导微管缺陷的新因子,研究人员构建出了一种肌肉细胞异位表达人类tau的果蝇模型,利用这一模型研究人员可以对微管网络进行清晰成像。研究人员证实过表达的tau被过度磷酸化,导致了微管密度降低,及更大的碎片,这与从前在阿尔茨海默氏症患者和小鼠模型中的研究结果相一致。利用遗传筛查,研究人员发现组蛋白脱乙酰基酶6 (HDAC6)无效突变(null mutation)可以挽救肌肉和神经元中tau诱导的微管缺陷。研究人员采用遗传和药理学方法抑制HDAC6的tubulin特异性脱乙酰基酶活性,证实这一挽救效应有可能是通过增进微管乙酰化所介导。
这些研究结果表明了HDAC6有可能是阿尔茨海默氏症和相关Tau病的一种独特的有潜力的药物靶点,从而为该领域研究指明了新方向。(生物谷Bioon.com)
doi: 10.1073/pnas.1207586110
PMC:
PMID:
HDAC6 mutations rescue human tau-induced microtubule defects in Drosophila
Ying Xiong, Kai Zhao, Jiaxi Wu, Zhiheng Xu, Shan Jin and Yong Q-Zhang.
Neurons from the brains of Alzheimer’s disease (AD) and related tauopathy patients contain neurofibrillary tangles composed of hyperphosphorylated tau protein. Tau normally stabilizes microtubules (MTs); however, tau hyperphosphorylation leads to loss of this function with consequent MT destabilization and neuronal dysfunction. Accordingly, MT-stabilizing drugs such as paclitaxel and epothilone D have been shown as possible therapies for AD and related tauopathies. However, MT-stabilizing drugs have common side effects such as neuropathy and neutropenia. To find previously undescribed suppressors of tau-induced MT defects, we established a Drosophila model ectopically expressing human tau in muscle cells, which allow for clear visualization of the MT network. Overexpressed tau was hyperphosphorylated and resulted in decreased MT density and greater fragmentation, consistent with previous reports in AD patients and mouse models. From a genetic screen, we found that a histone deacetylase 6 (HDAC6) null mutation rescued tau-induced MT defects in both muscles and neurons. Genetic and pharmacological inhibition of the tubulin-specific deacetylase activity of HDAC6 indicates that the rescue effect may be mediated by increased MT acetylation. These findings reveal HDAC6 as a unique potential drug target for AD and related tauopathies.