人类的遗传信息储存于DNA。虽然人体所有体细胞DNA都一样,其编码基因的表达在不同细胞中却不尽相同。那么,基因在不同类型的细胞中怎样选择性表达呢?人类DNA长达1.8米,通常缠绕在组蛋白上形成核小体,核小体经进一步折叠将DNA包装在小小的细胞核中。组蛋白起着DNA守护者的作用,决定着DNA上哪些基因可以表达。组蛋白自身有多种修饰,可能组成在细胞分裂时可遗传至下一代的密码,即“组蛋白密码”,用以指导基因表达的表观遗传调控。最近科学家发现,已分化的人类体细胞经过重编程变成具有可发育成个体潜力的全能细胞,该过程改变的就是表观遗传调控。细胞内的各种分子常常处于不断合成与降解的更新中,但为了保持遗传信息的稳定性,其DNA并不会降解。在体细胞中,作为DNA的守护者及表观遗传信息载体的组蛋白也一直被认为不会降解。
然而,中国科学院微生物研究所刘翠华副研究员与北京师范大学邱小波教授研究团队的一项合作研究发现,在精子发生和体细胞DNA损伤修复过程中,组蛋白均会降解,修正了科学界关于体细胞组蛋白不降解的理论。在精子发生过程中,单倍体基因组中约96%的组蛋白最终都会丢失,只有4%的组蛋白将其所载表观遗传信息传给了下一代。精子中组蛋白的选择性降解可能有利于清除可导致疾病的表观遗传标记,并避免清除从父代获得的、有益的表观遗传印记。在病原菌感染、核辐射或某些致癌物影响下,细胞内DNA常会发生损伤。如不及时修复DNA损伤,细胞可能会发生癌变,甚至危及存活。为了有效地修复损伤的DNA, 组蛋白必需从核小体中释放出来,从而为DNA修复蛋白顺利到达工作位点提供足够的空间保障。所以,此时的组蛋白降解可确保损伤的DNA被及时修复,以维持细胞的遗传信息稳定。
细胞内绝大多数蛋白质的降解通常依赖于泛素化介导的蛋白酶体通路。本项研究还发现乙酰化,而不是泛素化,介导了组蛋白通过特异的蛋白酶体降解。泛素化和乙酰化分别为两种不同的蛋白翻译后修饰,在基因表达的表观遗传调控中都起着重要的调控作用。如泛素化一样,乙酰化不仅修饰组蛋白,还可以修饰众多其它蛋白。目前已在七千多种人类蛋白中发现两万多个乙酰化位点。因此,本研究的发现将可能开辟关于乙酰化介导蛋白质降解研究的一个崭新领域。该研究还首次揭示组蛋白去乙酰化酶抑制剂促进DNA双链断裂诱导的、由乙酰化介导的组蛋白降解,增强细胞对DNA损伤的敏感性,促进细胞死亡。这一发现为它们的临床应用提供了重要基础。
蛋白酶体为由几十个蛋白亚基组成的复合蛋白酶,负责各种细胞中绝大多数蛋白质的降解。它调控着几乎所有的人类生命活动,包括细胞增殖、分化及凋亡,DNA修复与转录,和蛋白质质量控制,并参与传染病病原体的入侵、致病和人类机体的免疫应答等过程。本研究第一次揭示组织特异性蛋白酶体的存在,发现哺乳动物睾丸中的多数蛋白酶体(被命名为“生精蛋白酶体”)包含一个特殊激活因子,一个精细胞和精子特异的且与激活因子相邻的新亚基及三个特殊的催化亚基。 正是这一睾丸特异性蛋白酶体负责精子发生过程中依赖于乙酰化的组蛋白降解。这些结果为再生医学研究以及感染、癌症和男性不育等疾病的治疗提供了新思路。
相关论文已发表在最新一期国际刊物《细胞》上。微生物所病原室的刘翠华副研究员为本文的共同第一作者,北京师范大学生命科学学院的邱小波教授为该文的通讯作者。参与这一工作的研究人员来自北京师范大学,中国科学院微生物研究所、中国科学院动物研究所、中国科学院生物物理研究所、中国医学科学院/北京协和医学院、日本筑波大学、美国加州大学旧金山分校、清华大学医学院、中国人民解放军军事医学科学院、美国哈佛大学医学院等十个国内外高等院校或科研机构。(生物谷Bioon.com)
生物谷推荐英文摘要:
Cell, Volume 153, Issue 5, 1012-1024, 23 May 2013
doi:10.1016/j.cell.2013.04.032
Acetylation-Mediated Proteasomal Degradation of Core Histones during DNA Repair and Spermatogenesis
Histone acetylation plays critical roles in chromatin remodeling, DNA repair, and epigenetic regulation of gene expression, but the underlying mechanisms are unclear. Proteasomes usually catalyze ATP- and polyubiquitin-dependent proteolysis. Here, we show that the proteasomes containing the activator PA200 catalyze the polyubiquitin-independent degradation of histones. Most proteasomes in mammalian testes (“spermatoproteasomes”) contain a spermatid/sperm-specific α subunit α4 s/PSMA8 and/or the catalytic β subunits of immunoproteasomes in addition to PA200. Deletion of PA200 in mice abolishes acetylation-dependent degradation of somatic core histones during DNA double-strand breaks and delays core histone disappearance in elongated spermatids. Purified PA200 greatly promotes ATP-independent proteasomal degradation of the acetylated core histones, but not polyubiquitinated proteins. Furthermore, acetylation on histones is required for their binding to the bromodomain-like regions in PA200 and its yeast ortholog, Blm10. Thus, PA200/Blm10 specifically targets the core histones for acetylation-mediated degradation by proteasomes, providing mechanisms by which acetylation regulates histone degradation, DNA repair, and spermatogenesis.