据英国《每日电讯报》7月16日报道,美国科学家使用人体诱导多能干细胞(iPS细胞)制造出了能在实验鼠体内存活280天的人造血管。发表在最新一期美国《国家科学院学报》上的这项研究成果有助于开发出新的心脏病和糖尿病疗法。
麻省总医院的研究团队使用人体iPS细胞制造出了血管前体细胞,然后将这些前体细胞移植到实验鼠大脑的表面。两周后,这种前体细胞变成了功能性的血管,而且持续工作了280天。在这段时间内,这些人造血管的表现同实验鼠天生的血管毫无二致。
科学家们认为,能够修复或培育出新的血管有望成为心脏病和糖尿病新疗法的基础。
此前,也有科学家使用同样的方法来制造人造血管,但却无法保证在移植入动物体内后可以长时间起作用。另外,该研究论文的主要作者、麻省总医院的瑞凯士·金恩表示,将同样的细胞移植于皮肤下也可以制造出血管,但这种血管寿命更短,而且需要的前体细胞要多4倍。相对而言,新方法更方便快捷。
金恩认为,干细胞技术已经给基于细胞的再生医学领域带来了巨大活力,但是用iPS细胞制造出功能性的细胞仍然面临诸多挑战。
总编辑圈点
尽管前路坎坷,但“万能细胞”带来的福祉似已越来越近。2012年,日本名古屋大学医学系曾从高龄老鼠身上提取iPS细胞用于再造血管,其改善血液循环等方面的作用在观察中得到认可。而今,以人体iPS细胞制造的血管已能在实验鼠体内工作长达九个多月,这项技术如能切实运用于人体,对脑梗塞、动脉硬化及糖尿病患者的巨大意义,值得所有付出过的努力。(生物谷 Bioon.com)
生物谷推荐的英文摘要
PNAS doi: 10.1073/pnas.1310675110
Generation of functionally competent and durable engineered blood vessels from human induced pluripotent stem cells
Rekha Samuela,1,2, Laurence Daheronb,2, Shan Liaoa,2, Trupti Vardama,2, Walid S. Kamouna, Ana Batistaa, Christa Bueckerb,3, Richard Schäferb,3, Xiaoxing Hana, Patrick Aua,4, David T. Scaddenc, Dan G. Dudaa, Dai Fukumuraa,5, and Rakesh K. Jaina,5
Efficient generation of competent vasculogenic cells is a critical challenge of human induced pluripotent stem (hiPS) cell-based regenerative medicine. Biologically relevant systems to assess functionality of the engineered vessels in vivo are equally important for such development. Here, we report a unique approach for the derivation of endothelial precursor cells from hiPS cells using a triple combination of selection markers—CD34, neuropilin 1, and human kinase insert domain-containing receptor—and an efficient 2D culture system for hiPS cell-derived endothelial precursor cell expansion. With these methods, we successfully generated endothelial cells (ECs) from hiPS cells obtained from healthy donors and formed stable functional blood vessels in vivo, lasting for 280 d in mice. In addition, we developed an approach to generate mesenchymal precursor cells (MPCs) from hiPS cells in parallel. Moreover, we successfully generated functional blood vessels in vivo using these ECs and MPCs derived from the same hiPS cell line. These data provide proof of the principle that autologous hiPS cell-derived vascular precursors can be used for in vivo applications, once safety and immunological issues of hiPS-based cellular therapy have been resolved. Additionally, the durability of hiPS-derived blood vessels in vivo demonstrates a potential translation of this approach in long-term vascularization for tissue engineering and treatment of vascular diseases. Of note, we have also successfully generated ECs and MPCs from type 1 diabetic patient-derived hiPS cell lines and use them to generate blood vessels in vivo, which is an important milestone toward clinical translation of this approach.