一个分辨率能够低于一度、并且能够集成到活细胞内的纳米尺度的温度计,将会为生物学和医学研究的很多领域提供一个强大的新工具。这篇论文描述了用于纳米尺度的温度测量的一种新探针,它正好能够做到这一点。该设备所利用的是对金刚石纳米晶体中的氮-空位彩色中心的量子操纵。这些“中心”包含单电子自旋,并有依赖于局部温度、对其很灵敏的特定荧光性质。作者发现,它们能够以小至200纳米的空间分辨率被准确测定。通过将纳米金刚石和金纳米颗粒都引入一个人胚胎成纤维细胞中,他们演示了温度梯度控制及在亚细胞水平上所进行的“测绘”操作。(生物谷 Bioon.com)
生物谷推荐的英文摘要
Nature doi:10.1038/nature12373
Nanometre-scale thermometry in a living cell
G. Kucsko P. C. Maurer N. Y. Yao M. Kubo H. J. Noh P. K. Lo H. Park M. D. Lukin
Sensitive probing of temperature variations on nanometre scales is an outstanding challenge in many areas of modern science and technology1. In particular, a thermometer capable of subdegree temperature resolution over a large range of temperatures as well as integration within a living system could provide a powerful new tool in many areas of biological, physical and chemical research. Possibilities range from the temperature-induced control of gene expression2, 3, 4, 5 and tumour metabolism6 to the cell-selective treatment of disease7, 8 and the study of heat dissipation in integrated circuits1. By combining local light-induced heat sources with sensitive nanoscale thermometry, it may also be possible to engineer biological processes at the subcellular level2, 3, 4, 5. Here we demonstrate a new approach to nanoscale thermometry that uses coherent manipulation of the electronic spin associated with nitrogen–vacancy colour centres in diamond. Our technique makes it possible to detect temperature variations as small as 1.8 mK (a sensitivity of 9 mK Hz−1/2) in an ultrapure bulk diamond sample. Using nitrogen–vacancy centres in diamond nanocrystals (nanodiamonds), we directly measure the local thermal environment on length scales as short as 200 nanometres. Finally, by introducing both nanodiamonds and gold nanoparticles into a single human embryonic fibroblast, we demonstrate temperature-gradient control and mapping at the subcellular level, enabling unique potential applications in life sciences.