纽约医学院心血管研究所主任Piero Anversa医学博士再次证明,心脏有自己独特的用来心脏病发作后再生心肌组织的成体干细胞。这篇研究发表在9月19日期的《细胞》杂志上,建立在几周前在《美国科学院院刊》(PNAS)上发表的一篇研究之上。
《细胞》上的这篇研究是在Anversa博士的实验室中进行的,由Anversa博士、Bernardo Nadal-Ginard博士、Annarosa Leri医学博士和Jan Kajstura博士领导的研究小组完成。“直到最近,心脏生物学的理论还普遍认为成熟哺乳动物的心脏是没有再生能力的后有丝分裂器官。也就是说从刚出生到成年到衰老,心脏的心肌细胞数量相对稳定但又还面减少。但越来越多的证据向这个观点提出了挑战。
Anversa博士在心力衰竭研究中发现了大量证据证明心脏具有自我修复能力,从而驳斥了干细胞只能从血液、皮肤、中枢神经系统、肝脏、胃肠道和骨骼肌等成熟组织中获得的观点。在《细胞》的这篇研究中,Anversa和他的同事使用了分离自成年大鼠心脏的特殊细胞,这些细胞都有心脏祖细胞的性质。他们将富含这些心脏祖细胞的混合物导入肌肉萎缩的心脏,结果心脏产生了在结构和功能上够能胜任的新心肌细胞以及平滑肌细胞和内皮细胞。
“我们已经识别出这些干细胞存在于何处,正在想办法使它们迁移到心脏受损部位。到时我们会将I期临床试验的草案呈交给FDA审批。”Anversa博士表示
参考:
Hope for a Broken Heart?
Leslie A. Leinwand
[Summary] [Full Text] [PDF]
Adult Cardiac Stem Cells Are Multipotent and Support Myocardial Regeneration
Antonio P. Beltrami, Laura Barlucchi, Daniele Torella, Mathue Baker, Federica Limana, Stefano Chimenti, Hideko Kasahara, Marcello Rota, Ezio Musso, Konrad Urbanek, Annarosa Leri, Jan Kajstura, Bernardo Nadal-Ginard, and Piero Anversa
[Summary] [Full Text] [PDF] [Supplemental Data]
相关文献
Alison, M.R., Poulsom, R., Otto, W.R., Vig, P., Brittan, M., Direkze, N.C., Prestin, S.L., and Wright, N.A. (2003). Plastic adult stem cells: will they graduate from the school of hard knocks?. J. Cell Sci. 116, 599-603. [Medline]
Anderson, D.J., Gage, F.H., and Weissman, I.L. (2001). Can stem cells cross lineage boundaries?. Nat. Med. 7, 393-395. [Medline]
Anversa, P. and Nadal-Ginard, B. (2002). Cardiac chimerism: methods matter. Circulation 106, e129-e131. [Medline]
Anversa, P. and Nadal-Ginard, B. (2002). Myocyte renewal and ventricular remodeling. Nature 415, 240-243. [Medline]
Assmus, B., Schachinger, V., Teupe, C., Britten, M., Lehmann, R., Dobert, N., Grunwald, F., Aicher, A., Irbich, C., and Martin, H. et al. (2002). Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI). Circulation 106, 3009-3017. [Medline]
Beltrami, A.P., Urbanek, K., Kajstura, J., Yan, S.M., Finato, N., Bussani, R., Nadal-Ginard, B., Silvestri, F., Leri, A., Beltrami, C.A., and Anversa, P. (2001). Evidence that human cardiac myocytes divide after myocardial infarction. N. Engl. J. Med. 344, 1750-1757. [Medline]
Broudy, V.C. (1997). Stem cell factor and hematopoiesis. Blood 90, 1345-1364. [Medline]
Chien, K.R. and Olson, E.N. (2002). Converging pathways and principles in heart development and disease. Cell 110, 153-162. [Medline] [Full Text]
Frangogiannis, N.G., Perrard, J.L., Mendoza, L.H., Burns, A.R., Lindsey, M.L., Ballantyne, C.M., Michael, L.H., Smith, C.W., and Entman, M.L. (1998). Stem cell factor induction is associated with mast cell accumulation after canine myocardial ischemia and reperfusion. Circulation 98, 687-698. [Medline]
Gage, F.H. (2002). Mammalian neural stem cells. Science 287, 1433-1438. [Medline]
Glaser, R., Lu, M.M., Narula, N., and Epstein, J.A. (2002). Smooth muscle cells, but not myocytes, of host origin in transplanted human hearts. Circulation 106, 17-19. [Medline]
Hellermann, J.P., Jacobsen, S.J., Gersh, B.J., Rodeheffer, R.J., Reeder, G.S., and Roger, V.L. (2002). Heart failure after myocardial infarction: a review. Am. J. Med. 113, 324-330. [Medline]
Jiang, Y., Jahagirdar, B.N., Reinhardt, R.L., Schwartz, R.E., Keene, C.D., Ortiz-Gonzalez, X.R., Reyes, M., Lenvik, T., Lund, T., and Blackstad, M. et al. (2002). Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418, 41-49. [Medline]
Kajstura, J., Leri, A., Finato, N., DiLoreto, C., Beltrami, C.A., and Anversa, P. (1998). Myocyte proliferation in end-stage cardiac failure. Proc. Natl. Acad. Sci. USA 95, 8801-8805. [Medline]
Kasahara, H., Bartunkova, S., Schinke, M., Tanaka, M., and Izumo, S. (1998). Cardiac and extracardiac expression of Csx/Nkx2.5 homeodomain protein. Circ. Res. 82, 936-946. [Medline]
Kondo, M., Wagers, A.J., Manz, M.G., Prohaska, S.S., Scherer, D.C., Beilhack, G.F., Shizuru, J.A., and Weissman, I.L. (2003). Biology of hematopoietic stem cells and progenitors: implications for clinical application. Annu. Rev. Immunol. 21, 759-806. [Medline]
Kosaka, M., Kodama, R., and Eguchi, G. (1998). In vitro culture system for iris-pigmented epithelial cells for molecular analysis of transdifferentiation. Exp. Cell Res. 245, 245-251. [Medline]
Krause, D.S., Theise, N.D., Collector, M.I., Henegariu, O., Hwang, S., Gardner, R., Neutzel, S., and Sharkis, S.J. (2001). Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 105, 369-377. [Medline] [Summary] [Full Text]
Kunisada, T., Yoshida, H., Yamazaki, H., Miyamoto, A., Hemmi, H., Nishimura, E., Shultz, L.D., Nishikawa, S., and Hayashi, S. (1998). Transgene expression of steel factor in the basal layer of epidermis promotes survival, proliferation, differentiation and migration of melanocyte precursors. Development 125, 2915-2923. [Medline]
Laflamme, M.A., Myerson, D., Saffitz, J.E., and Murry, C.E. (2002). Evidence for cardiomyocyte repopulation by extracardiac progenitors in transplanted human hearts. Circ. Res. 90, 634-640. [Medline]
MacLellan, W.R. and Schneider, M.D. (2000). Genetic dissection of cardiac growth control pathways. Annu. Rev. Physiol. 62, 289-319. [Medline]
Mahmud, N., Devine, S.M., Weller, K.P., Parmar, S., Sturgeon, C., Nelson, M.C., Hewett, T., and Hoffman, R. (2001). The relative quiescence of hematopoietic stem cells in nonhuman primates. Blood 97, 3061-3068. [Medline]
McDonnell, T.J. and Oberpriller, J.O. (1984). The response of the atrium to direct mechanical wounding in the adult heart of the newt, Notophthalmus viridescens. An electron-microscope and autoradiographic study. Cell Tissue Res. 235, 583-592. [Medline]
Mikawa, T. (1999). Cardiac lineages. In Heart Development. Harvey, R.P. and Rosenthal, N. eds. (San Diego: Academic Press),
Molkentin, J.D., Lin, Q., Duncan, S.A., and Olson, E.N. (1997). Requirement of the transcription factor GATA4 for heart tube formation and ventral morphogenesis. Genes Dev. 11, 1061-1072. [Medline]
Morrison, S.J., Wandycz, A.M., Akashi, K., Globerson, A., and Weissman, I.L. (1996). The aging of hematopoietic stem cells. Nat. Med. 2, 1011-1019. [Medline]
Morrison, S.J., Wandycz, A.M., Hemmati, H.D., Wright, D.E., and Weissman, I.L. (1997). Identification of a lineage of multipotent hematopoietic progenitors. Development 124, 1929-1939. [Medline]
Muller, P., Pfeiffer, P., Koglin, J., Schafers, H.J., Seeland, U., Janzen, I., Urbschat, S., and Bohm, M. (2002). Cardiomyocytes of noncardiac origin in myocardial biopsies of human transplanted hearts. Circulation 106, 31-35. [Medline]
Nadal-Ginard, B., Kajstura, J., Leri, A., and Anversa, P. (2003). Myocyte death, growth, and regeneration in cardiac hypertrophy and failure. Circ. Res. 92, 139-150. [Medline]
Nadin, B.M., Goodell, M.A., and Hirschi, K.K. (2003). Phenotype and hematopoietic potential of side population cells throughout embryonic development. Blood, in press. Published online June 12, 2003. (10.1182/blood-2003-01-0118) .
Orlic, D., Kajstura, J., Chimenti, S., Jakoniuk, I., Anderson, S.M., Li, B., Pickel, J., McKay, R., Nadal-Ginard, B., and Bodine, D.M. et al. (2001). Bone marrow cells regenerate infarcted myocardium. Nature 410, 701-705. [Medline]
Perin, E.C., Dohmann, H.F., Borojevic, R., Silva, S.A., Sousa, A.L., Mesquita, C., Rossi, M.I., Carvalho, A.C., Dutra, H.S., and Dohmann, H.J. et al. (2003). Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation 107, 2294-2302. [Medline]
Quaini, F., Urbanek, K., Beltrami, A.P., Finato, N., Beltrami, C.A., Nadal-Ginard, B., Kajstura, J., Leri, A., and Anversa, P. (2002). Chimerism of the transplanted heart. N. Engl. J. Med. 346, 5-15. [Medline]
Rosenthal, N. (2003). Prometheus's vulture and the stem cell promise. N. Engl. J. Med. 346, 267-274. [Medline]
Rumyantsev, P.P. and Broisov, A. (1987). DNA synthesis in myocytes from different myocardial compartments of young rats in norm, after experimental infarction and in vitro. Biomed. Biochim. Acta 46, S610-S615. [Medline]
Scholzen, T. and Gerdes, J. (2000). The Ki-67 protein: from the known to the unknown. J. Cell. Physiol. 182, 311-322. [Medline]
Sellers, S.E., Tisdale, J.F., Agricola, B.A., Metzger, M.E., Donahue, R.E., Dunbar, C.E., and Sorrentino, B.P. (2001). The effect of multidrug-resistance 1 gene versus neo transduction on ex vivo and in vivo expansion of rhesus macaque hematopoietic repopulating cells. Blood 97, 1888-1891. [Medline]
Strauer, B.E., Brehm, M., Zeus, T., Kostering, M., Hernandez, A., Sorg, R.V., Kogler, G., and Wernet, P. (2002). Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation 106, 1913-1918. [Medline]
Suslov, O.N., Kukekov, V.G., Ignatova, T.N., and Steindler, D.A. (2002). Neural stem cell heterogeneity demonstrated by molecular phenotyping of clonal neurospheres. Proc. Natl. Acad. Sci. USA 99, 14506-14511. [Medline]
Teyssier-Le Discorde, M., Prost, S., Nandrot, E., and Kirszenbaum, M. (1999). Spatial and temporal mapping of c-kit and its ligand, stem cell factor expression during human embryonic haemopoiesis. Br. J. Haematol. 107, 247-253. [Medline]
Tropepe, V., Sibilia, M., Ciruna, B.G., Rossant, J., Wagner, E.F., and van der Koo, D. (1999). Distinct neural stem cells proliferate in response to EGF and FGF in the developing mouse telencephalon. Dev. Biol. 208, 166-168. [Medline]
Tse, H.F., Kwong, Y.L., Chan, J.K., Lo, G., Ho, C.L., and Lau, C.P. (2003). Angiogenesis in ischaemic myocardium by intramyocardial autologous bone marrow mononuclear cell implantation. Lancet 361, 47-49. [Medline]
Urbanek, K., Quaini, F., Tasca, G., Torella, D., Castaldo, C., Nadal-Ginard, B., Leri, A., Kajstura, J., Quaini, E., and Anversa, P. (2003). Intense myocyte formation from cardiac stem cells in human cardiac hypertrophy. Proc. Natl. Acad. Sci. USA 100, 10440-10445. [Medline]
Weissman, I.L., Anderson, D.J., and Gage, F. (2001). Stem and progenitor cells: origins, phenotypes, lineage commitments, and transdifferentiations. Annu. Rev. Cell Dev. Biol. 17, 387-403. [Medline]