纳米科学家将菠菜中得到的叶绿素a分子转换为复杂的构型(biological switch),预计将来有可能应用于绿色能源和医药开发。
叶绿素a(chloropyhll-a)是光合作用中的一种主要成分。俄亥俄州大学物理学家Saw-Wai Hla和 Violeta Iancu在9月6日PNAS发表文章说:利用扫描隧道显微镜(scanning tunneling microscope)操作菠菜中叶绿素a分子,得到这种分子的四种构型,首次详细描述叶绿素a(chloropyhll-a)的精细图像。
研究人员利用扫描隧道显微镜对叶绿素a成像,然后向分子中注射一个电子使分子能够在从直到弯四种阶段中位置之间变换构象。尽管以前俄亥俄州大学研究小组和其他研究小组扫描隧道显微镜创造了两步分子构型,但是新实验在目前最大的有机分子上利用得到了更为复杂的多步开关。
因为分子和蛋白构型决定生物学功能,因此这项工作能够迅速投入基础科学研究。而且为研制纳米级逻辑电路或者未来医学、计算机技术、绿色能源软件的
( 生物谷配图)
更多生物图片请进入
动力开关提供了新的思路。
物理学副教授Hla说:“弄清叶绿素a分子有助于解决生命起源和太阳能转换等问题。”研究受到俄亥俄州大学纳米生物学技术实验室和美国能源部资助。
英文原文:
Nanoscientists Create Biological Switch from Spinach Molecule
ATHENS, Ohio – Nanoscientists have transformed a molecule of chlorophyll-a from spinach into a complex biological switch that has possible future applications for green energy, technology and medicine.
The study offers the first detailed image of chloropyhll-a – the main ingredient in the photosynthesis process – and shows how scientists can use new technology to manipulate the configuration of the spinach molecule in four different arrangements, report Ohio University physicists Saw-Wai Hla and Violeta Iancu in today’s early edition of the journal Proceedings of the National Academy of Sciences.
The scientists used a scanning tunneling microscope to image chlorophyll-a and then injected it with a single electron to manipulate the molecule into four positions, ranging from straight to curved, at varying speeds.Though the Ohio University team and others have created two-step molecule switches using scanning tunneling microscope manipulation in the past, the new experiment yields a more complex multi-step switch on the largest organic molecule to date.
The work has immediate implications for basic science research, as the configuration of molecules and proteins impacts biological functions. The study also suggests a novel route for creating nanoscale logic circuits or mechanical switches for future medical, computer technology or green energy applications, said Hla, an associate professor of physics.
“It’s important to understand something about the chlorophyll-a molecule for origin of life and solar energy conversion issues,” he said.
The study was funded by Ohio University’s Nanobiotechnology Initiative and the U.S. Department of Energy. Hla is a member of the university’s Quantitative Biology Institute and Nanoscale & Quantum Phenomena Institute. Iancu is a doctoral candidate in the Department of Physics and Astronomy.