杜克大学医疗中心的科学家Mariano Garcia Blanco以影像的方式,呈现出活的动物细胞如何利用重要的生物过程,将基因切成小方块并进行剪接,创造独特的各种蛋白质。这项研究是在小鼠体内进行的,有助于解释人类生物学中的重要奇迹:为什么身体中每个细胞理相同的基因,却会制造出不同的蛋白质。
研究结果也有助于观察某些疾病的病程,包括癌症发生过程中,一种名为选择性剪接的步骤,癌细胞经由这个步骤,制造出错误的蛋白质。
这项研究结果发表于2006 年12月1 日的RNA中,是由美国国家卫生研究院所资助的。
之前科学家已经在试管中研究了细胞和组织的选择性剪接,但是这是第一篇成功地使哺乳动物活细胞内发生之选择性剪接影像化的研究。
将RNA选择性剪接成小单位的外显子(exons),然后重新以不同的顺序接合外显子形成另一种RNA分子。在这个重新编制的过程中,有一些外显子被保留下来,但是其它则被剔除掉。
在这项研究中,研究人员利用小鼠追踪FGFR2基因,这个基因与正常的小鼠和人类发展有关,科学家创造出FGFR2 基因受到绿色荧光标记的小鼠,这些小鼠的FGFR2基因带有内含子剪接沉默子,如果剪接沉默子将FGFR2 所含的IIIb外显子切除后,就会发出荧光。
因此,科学家可以追踪内含子剪接沉默子是否切除了IIIb外显子,并发现是否有其它剪接沉默子或帮手蛋白质参与其中。这项研究也是一个极佳的例子,证明利用活体生物进行研究,比利用实验室的细胞培养更有助于研究基因和蛋白质。
英文原文:
Mariano Garcia-Blanco, Molecular Genetics & Microbiology
Human genes are complex genetic units that span 28,000 nucleotides on average while encoding for messengers no longer than 2,500 nucleotides. This messenger coding information is found in short exons that are identified and ligated together in the process known as pre-messenger RNA splicing. The complex nature of genes provides for versatility of expression because one gene can encode for many proteins by altering the selection of exons to be included in the messenger. This process is known as alternative splicing and it is the major engine of proteome diversity in humans. Alternative splicing is tightly regulated in normal development and is disregulated in disease. My laboratory studies on the regulation of processing of messenger RNAs focusing on the alternative splicing of the fibroblast growth factor receptor-2 (FGFR2) transcripts. FGFR2 transcripts are alternatively spliced to yield regulated expression of two receptors with dramatically different ligand specificity. Not only is this process critical for normal development of many epithelial tissues, but during progression of prostate tumors the alternative splicing of FGFR2 is abnormal. We have characterized the cis-elements and trans-acting factors responsible for regulation of alternative splicing in FGFR2 (Andy Baraniak, David Mauger). We have also developed novel reporters that will assay the alternative splicing of FGFR2 in tissues and tumors in living cells and animals (Vivian Bonano). The laboratory also investigates the connections, physical and functional, between RNA polymerase II transcript elongation and alternative splicing. Finally we are also investigating the evolution of this alternative splicing event. Clearly the ability of genes to multitask has evolved in mammals and is prevalent in humans. The evolution of alternative splicing probably accounts for the possibility to maintain a limited number of genes while increasing tissue diversity.