《自然》杂志2月25日在线发表了哈佛大学庄晓薇研究组有关端粒酶组装的最新研究结果。端粒酶研究对肿瘤研究具有重大意义,庄晓薇等人通过一种复杂的技术实时跟踪观察了单个细胞中的结构变化,揭示了端粒酶中三种不同的蛋白质和RNA成分是如何相互配合,并在形成过程中不断修正以确保下一步得到正确执行的。
端粒酶是一种基本的核蛋白逆转录酶,可将端粒DNA加至真核细胞染色体末端。端粒在各物种细胞中对于保持染色体稳定性和细胞活性均有重要作用,而端粒酶则能延长缩短的端粒(缩短的端粒的细胞复制能力受限),从而增强体外细胞的增殖能力。端粒酶对人体快速分裂的细胞极其重要,比如正在发育中的胎儿。端粒酶在正常成人人体组织中的活性被抑制,而在肿瘤中被重新激活,端粒酶可能参与了肿瘤的恶性转化。端粒酶在保持端粒稳定、基因组完整、细胞长期的活性和潜在的持续增殖能力等方面有重要作用。因此理解端粒酶是如何被组装的非常重要。
庄晓薇研究组研究了一种名为嗜热四膜虫(Tetrahymena thermophila)的单细胞水生生物的端粒酶,因为单细胞生物比更高等的生物结构简单,更加容易控制。
端粒酶主要依靠两种成分来实现其功能:一种名为端粒酶逆转录酶(TERT)的蛋白酶,另一种对TERT起到指导作用的一小段RNA片段。
庄解释说:“端粒酶只要这两样东西就可以起作用,但是实际上如果你仅仅把它们简单地放到一起去,它们是不会组装成功能结构的。还需要一些其它的辅助蛋白。”庄的研究组与伯克利Kathleen Collins小组合作,发现第三种分子——一种名为p65的蛋白质促进了端粒酶的组装。
庄及其合作者们利用斯坦福科学家Lubert Stryer首创的荧光共振能量转移检测系统(FRET),实时精确观察到端粒酶一步步进行组装的全过程。
庄晓薇说,下一步他们将研究更高级有机体中的端粒酶,以期最终研究人类的端粒酶组装机制。
庄晓薇博士,是中国科学技术大学少年班培养出的杰出人才,她19岁考取全额奖学金赴美攻读博士学位,现任哈佛大学教授,从事生物化学研究。2003年荣获美国麦克阿瑟基金会评选出的“天才奖”,独得奖金50万美元。
部分英文原文:
Nature advance online publication 25 February 2007 | doi:10.1038/nature05600; Received 18 September 2006; Accepted 15 January 2007; Published online 25 February 2007
Stepwise protein-mediated RNA folding directs assembly of telomerase ribonucleoprotein
Michael D. Stone1, Mariana Mihalusova2, Catherine M. O'Connor5, Ramadevi Prathapam5, Kathleen Collins5 and Xiaowei Zhuang1,3,4
Department of Chemistry and Chemical Biology,
Department of Molecular and Cellular Biology,
Department of Physics, and,
Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138, USA
Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
Correspondence to: Xiaowei Zhuang1,3,4 Correspondence and requests for materials should be addressed to X.Z. (Email: zhuang@chemistry.harvard.edu).
Telomerase is an essential cellular ribonucleoprotein (RNP) that solves the end replication problem and maintains chromosome stability by adding telomeric DNA to the termini of linear chromosomes1, 2, 3. Genetic mutations that abrogate the normal assembly of telomerase RNP cause human disease4. It is therefore of fundamental and medical importance to decipher cellular strategies for telomerase biogenesis, which will require new insights into how specific interactions occur in a precise order along the RNP assembly pathway. Here we use a single-molecule approach to dissect the individual assembly steps of telomerase. Direct observation of complex formation in real time revealed two sequential steps of protein-induced RNA folding, establishing a hierarchical RNP assembly mechanism: interaction with the telomerase holoenzyme protein p65 induces structural rearrangement of telomerase RNA, which in turn directs the binding of the telomerase reverse transcriptase to form the functional ternary complex. This hierarchical assembly process is facilitated by an evolutionarily conserved structural motif within the RNA. These results identify the RNA folding pathway during telomerase biogenesis and define the mechanism of action for an essential telomerase holoenzyme protein.