生物谷报道:北京大学物理学院和理论生物学中心欧阳颀教授课题组、国家纳米科学中心、中科院化学所的合作研究成果目前发表在6月号的《自然.纳米技术》上(Youdong Mao, Song Chang, Shaoxuan Yang, Qi Ouyang, Lei Jiang. Tunnable non-equilibrium gating of flexible DNA nanochannels in response to transport flux. Nature Nanotechnology, 2, 366-371, 2007)。该论文在国际上首次研究了DNA纳米软通道的非平衡开关(Nonequilibrium gating)的基本物理性质,也是《自然 . 纳米技术》自2006年10月创刊以来,所发表原始研究论文中第一篇来自中国(包括香港和台湾)的论文。
生物纳米通道在生命的分子细胞过程中起着至关重要的作用,如生物能量转换,神经细胞膜电位的调控,细胞间的通信和信号转导等等。北京大学物理学院和理论生物学中心,国家纳米科学中心、中科院化学所得相关人员从实验和理论等多角度研究了DNA纳米软通道的开关性质。他们关于DNA纳米舱的前期工作曾连续发表在国际知名杂志《核酸研究》上(Y. Mao, et al. Nucleic Acids Res. 31, e108 (2003); 32, e144 (2004); 35, e33 (2007)),其中2004年的《核酸研究》论文是国际上公认最早研究DNA纳米舱的工作。在该《自然 . 纳米技术》论文中,他们发现由于DNA通道的柔软性(Flexibility),使其开关直接受到通道内输运粒子产生的压力的调控,表现出类似于齿轮机制(Ratchet mechanism)的动力学行为。他们从基本的朗之万方程(Langevin equation)和福克-普兰克方程(Fokker-Plank equation)等非平衡统计物理学原理出发,以描述纳米软通道和输运粒子相互作用为切入点,构造了一套理论模型,首次提出并解决了DNA纳米软通道和输运粒子耦合动力学行为。基于该理论的计算机模拟进一步再现了他们关于DNA纳米通道开关的一系列实验观测。
《自然 . 纳米技术》是《自然》新推出的月刊,其目的是发表来自国际纳米科学和纳米技术全部领域的高品质的原始研究论文。(北京大学)
原始出处:
Nature Nanotechnology 2, 366 - 371 (2007)
Published online: 27 May 2007 | doi:10.1038/nnano.2007.148
Subject Categories: Nanobiotechnology | Nanosensors and other devices
Tunable non-equilibrium gating of flexible DNA nanochannels in response to transport flux
Youdong Mao1,2, Song Chang1, Shaoxuan Yang1, Qi Ouyang1 & Lei Jiang3
Abstract
Biological nanochannels made from proteins play a central role in cellular signalling1, 2, 3, 4, 5, 6, 7, 8, 9. The rapid emergence of DNA nanotechnology in recent years10, 11, 12, 13 has opened up the possibility of making similar nanochannels from DNA. Building on previous work on switchable DNA nanocompartment14, 15, we have constructed complex DNA nanosystems to investigate the gating behaviour of these nanochannels. Here we show that DNA nanochannels can be gated by stress exerted by permeating solute particles at non-equilibrium states due to the high flexibility of the nanochannels. This novel gating mechanism results in tunable ratchet-like transport of solute particles through the nanochannels. A simple model that couples non-equilibrium channel gating with transport flux can quantitatively explain a number of the phenomena we observe. With only one set of model parameters, we can reproduce diverse gating behaviours, modulated by an inherent gating threshold. This work could lead to the development of new devices based on DNA nanochannels.