生物谷报道:美国科学家的一项最新研究表明,利用不同靶标和路径开发的抗生素具一个共同的杀菌机制,它们具有相同的“终极武器”——羟基自由基分子,从而破坏细菌的DNA、蛋白质和脂肪。该研究成果有助于科学家未来开发出超级药物。相关论文发表在9月7日的《细胞》杂志上。
为了开发新的药物,美国波士顿大学的James Collins带领的小组对从药物使用到细胞死亡的全过程进行了分段研究。他们曾发现一种抗生素会影响细菌的DNA复制,从而释放出自由基。在最新的研究中,利用荧光染料标记羟基分子,研究人员惊讶地发现,在另外两种攻击细胞壁和阻碍蛋白制造的抗生素中,与第一种情况相同的自由基仍然会出现。
科学家通常认为,这三种不同路径的抗生素彼此差异很大,不过,新的研究却说明,它们具有相同的伎俩。不过,研究人员强调,这种相似性只存在于杀菌剂(包括青霉素)中,阻碍细菌生长的抑菌药物并不会引起自由基的释放。
临床上每一种抗生素都有一定的货架期,实际上就是细菌产生抗性的时间问题。因此药剂师需要不断地创造新的抗生素。新的研究成果有望为未来抗生素的设计开辟一条新的道路。Collins表示,药剂师可以通过添加特定的化学药物,来阻碍细菌修复DNA和抵御自由基的作用,从而加强环丙沙星等经典抗生素的效力,并将它们制成超级药物。
美国北卡罗莱纳大学的Scott Singleton表示,这一令人兴奋的发现可以让许多副作用较大(因高剂量引起)的传统药物重回货架。如果这些药物更加有效,它们的用量就会降低,副作用也会减小。
加拿大McMaster大学的生物化学家Gerry Wright说,“这正是当下抗生素研究领域所需要的发现,对我们自认为‘知晓’的事实的新认识。”(科学网 任霄鹏/编译)
原始出处:
Cell, Vol 130, 797-810, 07 September 2007
Article
A Common Mechanism of Cellular Death Induced by Bactericidal Antibiotics
Michael A. Kohanski,1,2,5,6 Daniel J. Dwyer,1,3,6 Boris Hayete,1,4 Carolyn A. Lawrence,1,2 and James J. Collins1,2,3,4,
1 Center for BioDynamics and Center for Advanced Biotechnology, Boston University, Boston, MA 02215, USA
2 Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
3 Program in Molecular Biology, Cell Biology, and Biochemistry, Boston University, Boston, MA 02215, USA
4 Bioinformatics Program, Boston University, Boston, MA 02215, USA
5 Boston University School of Medicine, Boston, MA 02118, USA
Corresponding author
James J. Collins
jcollins@bu.edu
Summary
Antibiotic mode-of-action classification is based upon drug-target interaction and whether the resultant inhibition of cellular function is lethal to bacteria. Here we show that the three major classes of bactericidal antibiotics, regardless of drug-target interaction, stimulate the production of highly deleterious hydroxyl radicals in Gram-negative and Gram-positive bacteria, which ultimately contribute to cell death. We also show, in contrast, that bacteriostatic drugs do not produce hydroxyl radicals. We demonstrate that the mechanism of hydroxyl radical formation induced by bactericidal antibiotics is the end product of an oxidative damage cellular death pathway involving the tricarboxylic acid cycle, a transient depletion of NADH, destabilization of iron-sulfur clusters, and stimulation of the Fenton reaction. Our results suggest that all three major classes of bactericidal drugs can be potentiated by targeting bacterial systems that remediate hydroxyl radical damage, including proteins involved in triggering the DNA damage response, e.g., RecA.