生物谷报道:来自麻省理工与哈佛大学总医院(Broad Institute of Massachussetts Institute of Technology and Harvard University),德国欧洲分子生物学实验室,霍德华休斯医学院等多处著名研究机构的研究人员惊讶的发现了DNA执行功能的一种新方式,即两个互补形状“工具”能完成完全的不同功能。这一研究成果公布在2008年1月1日的Genes & Development杂志上。
领导这一研究的是MIT计算机科学与人工智能实验室的Manolis Kellis教授,第一作者为其博士后研究人员Alexander Stark。他们在这篇研究论文中发现一些miRNA基因并不仅仅来自DNA链中的一条,而是两条链都能编码RNA,从而得到的miRNAs能形成发夹结构,进入发育成成熟的miRNAs。Kellis and Stark在果蝇中发现了两种这样的miRNAs对,小鼠中发现了八对。
微小RNA(microRNA,简称miRNA)是生物体内源长度约为20-23个核苷酸的非编码小RNA,通过与靶mRNA的互补配对而在转录后水平上对基因的表达进行负调控,导致mRNA的降解或翻译抑制。到目前为止,已报道有几千种miRNA存在于动物、植物、真菌等多细胞真核生物中,进化上高度保守。
反义转录,其产物就是与正义的RNA互补的反义RNA(或者称反义转录本),反义RNA可以通过与正义RNA的互补结合实现转录后基因沉默,从而控制基因表达。在这篇文章中发现Hox miRNA位点的反义转录(antisense transcription):miR-iab-4能产生一种新的miRNA前体——mir-iab-8,继而成为有调控活性的RNAs。这种异位表达(ectopical expressed)可以通过直接抑制Hox基因靶标产生同源异性表型(homeotic phenotype)。
Kellis表示,这种DNA双链都可以编码功能性RNA产物的方式“在之前从来就没有想象过”,但是这一研究结果证明确实存在这种方式,而且也说明在其它许多物种中,也许也存在这种双链DNA都编码重要功能的“配对组”。
这一发现建立在之前有关miRNA调控的一项同样令人惊讶的发现上:12月,Stark和Kellis报道了一个单miRNA发夹结构的双臂都能针对不同的靶标产生不同的,功能性miRNA。这两项发现说明单基因能编码产生4种不同功能——DNA双链的每条链都能产生一个发夹结构,而每个发夹结构能产生一种miRNA。
Kellis研究小组利用的是生物信息学手段进行多种生物基因组分析,即比较基因组学,通过这种方法他们在许多不同物种中发现了蛋白编码基因,RNAs,miRNAs,调控元件和个体调控的靶标,Kellis表示,“这代表着在基因组生物学研究中一种新阶段,即不仅在实验室中,利用计算机终端也能得到重要的成果。”
同时在1月《G&D》上的,来自纽约约斯隆/凯德琳癌症研究中心(Memorial Sloan-Kettering Cancer Center)发育生物学系的赖教授(Eric C.Lai)也有相似的发现,而来自哈佛医学院的Welcome Bender博士则证明了miR-iab-4的敲除揭示了一种从相反链转录的miRNA的存在,而且反义miRNA的缺失会引起一个hox基因的些轻微去抑制(derepression)。这些在果蝇和哺乳动物中发现的额外的反义miRNA说明这种新机制也许能增加科学家们对miRNA功能的多样化的了解。
生物谷推荐原始出处:
GENES & DEVELOPMENT 22:8-13, 2008
A single Hox locus in Drosophila produces functional microRNAs from opposite DNA strands
Alexander Stark1,2,6,8, Natascha Bushati3,6, Calvin H. Jan4, Pouya Kheradpour1,2, Emily Hodges5, Julius Brennecke5, David P. Bartel4, Stephen M. Cohen3,7, and Manolis Kellis1,9
1 Broad Institute of Massachussetts Institute of Technology and Harvard University, Cambridge, Massachusetts 02141, USA; 2 Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA; 3 European Molecular Biology Laboratory, 69117 Heidelberg, Germany; 4 Department of Biology, Howard Hughes Medical Institute and Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology Cambridge, Massachusetts 02139, USA; 5 Watson School of Biological Sciences and Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
MicroRNAs (miRNAs) are 22-nucleotide RNAs that are processed from characteristic precursor hairpins and pair to sites in messages of protein-coding genes to direct post-transcriptional repression. Here, we report that the miRNA iab-4 locus in the Drosophila Hox cluster is transcribed convergently from both DNA strands, giving rise to two distinct functional miRNAs. Both sense and antisense miRNA products target neighboring Hox genes via highly conserved sites, leading to homeotic transformations when ectopically expressed. We also report sense/antisense miRNAs in mouse and find antisense transcripts close to many miRNAs in both flies and mammals, suggesting that additional sense/antisense pairs exist.
[Keywords: Drosophila; miR-iab-4; Hox; antisense miRNAs]]
Received September 6, 2007; revised version accepted November 2, 2007.
6 This authors contributed equally to this work.
7 Present address: Temasek Life Sciences Laboratory, The National University of Singapore, Singapore 117604.
8 Corresponding authors.
E-MAIL alex.stark@mit.edu ; FAX (617) 253-7512.
9 E-MAIL manoli@mit.edu ; FAX (617) 253-7512.
Supplemental material is available at http://www.genesdev.org.
附:
Manolis Kellis, Ph.D.
Assistant Professor of Computer Science
MIT Computer Science and Artificial Intelligence Laboratory
Broad Institute of MIT and Harvard
Stata Center - 32G.826 - 617.253.2419
Karl Van Tassel Career Development Chair, 2007
National Science Foundation Career Award, 2007
Technology Review Top Young Innovators, 2006
Distinguished Alumnus (1964) Career Development Chair, 2005
Research Interests
Computational Biology
HumanMotifs - Motif discovery in the human genome
Duplication - Genome duplication in yeast
Yeast - Gene identification and motif discovery in yeast
6.895 - Computational Biology: Genomes, Networks, Evolution
Hox - Developmental gene clusters in mammals
Evolution - Computational requirements for evolvability
Thesis - Received Sprowls award for best PhD thesis in CS