生物谷报道:加州大学伯克利分校的科学家3日在《美国科学院院刊》发表论文称通过添加维生素或微量元素可激活DNA修复机制。使用这种方法将修复解决遗传基因的一些初级缺陷,恢复一些DNA中的活性酶,将有助于人类基因组的研究。
科学家们在20年的研究过程中,首次发现简单的维生素有助于增强一些遗传基因中重要的酶的活性,修补一些酶的工作秩序。研究表明维生素可以“治疗”许多稀有和潜在的致命代谢缺陷所造成的基因突变的关键酶。这些遗传性的基因缺陷疾病,都具有两个副本的等位基因和一个必不可少的关键酶。由于关键酶的作用,基因可能只有一个有缺陷,或是两个副本都有缺陷,而这种方法将一些微量补充的维生素对这些关键酶造成微妙影响,修补缺陷或将其淘汰。
研究人员确信在特定维生素的作用下,一些遗传基因缺陷疾病有很大的变化。某些酶的功能,都能恢复正常的活力。研究人员以把人类基因变异移植到酵母细胞,以测试维生素对酶的功能。科学家可以准确地评估,这种新方法是否可以彻底改变人类的面貌。他们的研究获得了国防高级研究计划局( DARPA )和美国军队的支持,用于使用这种新方法创造无敌的超级士兵。通过修补人类基因组中的缺陷,制造完美的人类。“我们的士兵可以像顶尖运动员那样,获得持久的耐力和体力,甚至可以像蝾螈一样再生肢体。 ” 据加州大学伯克利分校的贾思波·拉恩称,美国军方的目的十分明确,就是要通过这种方法,修改士兵的个人基因组,打造完美无敌的超级战士。
同时,加州大学伯克利分校的科学家们发现在人体中有种酶叫亚甲基四氢叶酸还原酶(MTHFR)。这种“变种”酶可以使维生素B正常工作,在合成DNA所需的核苷酸中起重要作用。一些治疗癌症的药物如甲氨蝶呤,就是采取此酶来阻断DNA的合成来控制癌细胞增长。科学家们在研究中使用的DNA样本来自564个人和种族,在其中他们发现三种常见变异的酶。研究人员发现,实际上有4种不同的变异的酶对基因突变产生影响。为此研究人员认为,对于这4中酶造成的基因突变还需要补充叶酸,可以帮助恢复全部功能,调整这些酶在基因组中的活动和作用。而对于打造完美无敌的超级战士,科学家认为目前还需要对60000多的基因突变样本进行分析,从而利用这种新方法对症下药。(生物谷www.bioon.com)
生物谷推荐原始出处:
Proc. Natl. Acad. Sci. USA, 10.1073/pnas.0802813105
The prevalence of folate-remedial MTHFR enzyme variants in humans
Nicholas J. Marini*,, Jennifer Gin*, Janet Ziegle, Kathryn Hunkapiller Keho, David Ginzinger,, Dennis A. Gilbert, and Jasper Rine*,
*Department of Molecular and Cellular Biology, California Institute for Quantitative Biosciences, Stanley Hall, University of California, Berkeley, CA 94720-3220; and Applied Biosystems, Inc., 850 Lincoln Centre Drive, Foster City, CA 94404
Communicated by Bruce N. Ames, University of California, Berkeley, CA, March 24, 2008 (received for review November 20, 2007)
Abstract
Studies of rare, inborn metabolic diseases establish that the phenotypes of some mutations in vitamin-dependent enzymes can be suppressed by supplementation of the cognate vitamin, which restores function of the defective enzyme. To determine whether polymorphisms exist that more subtly affect enzymes yet are augmentable in the same way, we sequenced the coding region of a prototypical vitamin-dependent enzyme, methylenetetrahydrofolate reductase (MTHFR), from 564 individuals of diverse ethnicities. All nonsynonymous changes were evaluated in functional in vivo assays in Saccharomyces cerevisiae to identify enzymatic defects and folate remediability of impaired alleles. We identified 14 nonsynonymous changes: 11 alleles with minor allele frequencies <1% and 3 common alleles (A222V, E429A, and R594Q). Four of 11 low-frequency alleles affected enzyme function, as did A222V. Of the five impaired alleles, four could be restored to normal functionality by elevating intracellular folate levels. All five impaired alleles mapped to the N-terminal catalytic domain of the enzyme, whereas changes in the C-terminal regulatory domain had little effect on activity. Impaired activity correlated with the phosphorylation state of MTHFR, with more severe mutations resulting in lower abundance of the phosphorylated protein. Significantly, diploid yeast heterozygous for mutant alleles were impaired for growth, particularly with lower folate supplementation. These results suggested that multiple less-frequent alleles, in aggregate, might significantly contribute to metabolic dysfunction. Furthermore, vitamin remediation of mutant enzymes may be a common phenomenon in certain domains of proteins.