生物谷Bioon.com报道:美国和法国科学家近日研究阐明了钠依赖葡萄糖转运蛋白(SGLTs)的结构,该蛋白的作用在于将葡萄糖“泵”进细胞。这类蛋白在慢性腹泻的治疗中得到应用,每年挽救了数百万患病儿童的生命。弄清这类蛋白的结构将有助于加速一些新药的开发,用于治疗糖尿病和癌症。相关论文7月3日在线发表于《科学》(Science)杂志上。
领导此次研究的是美国加州大学洛杉矶分校生理学系的Jeff Abramson和Ernest Wright。研究人员利用X射线结晶学技术,结合计算机模拟,制造了首张高分辨率的、三维的葡萄糖转运蛋白图片。这也是葡萄糖向细胞内转运机制的首个原子水平的证据,为理解膜蛋白的动力学功能提供了基础性认识。
Abramson说:“这是一个非常具有挑战性的研究,每一步都需要创新。我们开发出新的方法‘诱使’蛋白结晶化,然后花费数年使结晶达到适合用X射线呈现的状态。如果没有蛋白的大量生产能力和提纯能力,这一切都将是不可能的。”
目前,很多制药公司已经开展了大量的临床试验,以评估控制糖尿病患者血糖水平的抑制剂的使用,这些抑制剂的作用机制是标靶SGLT1和SGLT2蛋白,阻碍肠内葡萄糖的吸收,并增加葡萄糖在尿内的排泄量。此次研究结果无疑将大大提升合理设计此类药物的能力。
Wright和Abramson目前正在研究转运蛋白抑制剂的调节方式,以推动糖尿病、肥胖及癌症药物更好地进行研发。(科学网 梅进/编译)
生物谷推荐原始出处:
(《科学》(Science),DOI: 10.1126/science.1160406,Ernest M. Wright,Jeff Abramson)
Published Online July 3, 2008
Science DOI: 10.1126/science.1160406
Science Express Index
Research Articles
Submitted on May 13, 2008
Accepted on June 18, 2008
The Crystal Structure of a Sodium Galactose Transporter Reveals Mechanistic Insights into Na+/Sugar Symport
Salem Faham 1, Akira Watanabe 1, Gabriel Mercado Besserer 1, Duilio Cascio 2, Alexandre Specht 3, Bruce A. Hirayama 1, Ernest M. Wright 1*, Jeff Abramson 1*
1 Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, California 90095–1751, USA.
2 UCLA-Department of Energy Institute of Genomics and Proteomics, University of California, Los Angeles, CA 90095, USA.
3 Laboratoire de Chimie Bioorganique, Université Louis Pasteur / CNRS UMR 7175 LC01, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France.
* To whom correspondence should be addressed.
Ernest M. Wright , E-mail: ewright@mednet.ucla.edu
Jeff Abramson , E-mail: jabramson@mednet.ucla.edu
Membrane transporters that use energy stored in sodium gradients to drive nutrients into cells constitute a major class of proteins. We report the crystal structure of a member of the solute sodium symporters (SSS), the Vibrio parahaemolyticus sodium/galactose symporter (vSGLT). The ~3.0 angstrom structure contains 14 transmembrane (TM) helices in an inward-facing conformation with a core structure of inverted repeats of 5 TM helices (TM2-TM6 and TM7-TM11). Galactose is bound in the center of the core, occluded from the outside solutions by hydrophobic residues. Surprisingly, the architecture of the core is similar to the leucine transporter (LeuT) from a different gene family. Modeling the outward-facing conformation based on the LeuT structure, in conjunction with biophysical data, provides insight into structural rearrangements for active transport.