(封面图片:细菌DNA转位蛋白FtsK的三个γ域,它们与一个8碱基对KOPS序列结合。)
环状染色体二聚体是由于姊妹染色单体之间的重组而产生的,它们在细胞分裂的过程中无法被成功分离到子代细胞当中。在2008年8月22日出版的《分子细胞》(Molecular Cell)上,来自英国的一组科学家发表了他们的最新研究结果,他们表示通过研究找到了一种细菌DNA转位蛋白-FtsK的3个γ区域,并且阐述了这种转位蛋白对于DNA负载和染色体重组等发生作用的内部机制。
研究人员对大肠埃希氏菌(Escherichia coli)研究后发现,在该细菌的dif位点的XerCD位点特异性重组能将这些二聚体染色体转化为染色单体,这一过程中伴随着一个需要DNA转位酶(DNA translocase)FtsK的反应。其中染色体上的一段小型8碱基对DNA序列KOPS(GGGNAGGG)引导着FtsK的转位发生。而FtsK通过一个C端翼状螺旋γ域来和KOPS序列发生相互作用。
对于3个与KOPS序列结合的FtsKγ域的晶体结构分析,帮助科学家了解了这些γ域是如何识别KOPS序列的。因此,研究小组推测每个FtsK六聚体中存在3个γ域对于识别KOPS序列并且负载上FtsK是够用的,这将最终激活dif位点的重组发生。而在转位过程中,FtsK无法识别颠倒的KOPS序列。因此,文章作者提出,KOPS序列是作为FtsK负载位点存在的,以上这种特殊的γ-KOPS之间的结合方式控制着FtsK马达区域,并且最终决定着其运动的单一方向。(生物谷Bioon.com)
生物谷推荐原始出处:
Molecular Cell,Vol 31, 498-509, 22 August 2008,Jan L?we, Ian Grainge
Molecular Mechanism of Sequence-Directed DNA Loading and Translocation by FtsK
Jan Löwe,1, Antti Ellonen,2 Mark D. Allen,3 Claire Atkinson,2 David J. Sherratt,2 and Ian Grainge2,
1 MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
2 Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
3 Centre for Protein Engineering, MRC, Hills Road, Cambridge CB2 0QH, UK
Corresponding author
Dimeric circular chromosomes, formed by recombination between monomer sisters, cannot be segregated to daughter cells at cell division. XerCD site-specific recombination at the Escherichia coli dif site converts these dimers to monomers in a reaction that requires the DNA translocase FtsK. Short DNA sequences, KOPS (GGGNAGGG), which are polarized toward dif in the chromosome, direct FtsK translocation. FtsK interacts with KOPS through a C-terminal winged helix domain γ. The crystal structure of three FtsKγ domains bound to 8 bp KOPS DNA demonstrates how three γ domains recognize KOPS. Using covalently linked dimers of FtsK, we infer that three γ domains per hexamer are sufficient to recognize KOPS and load FtsK and subsequently activate recombination at dif. During translocation, FtsK fails to recognize an inverted KOPS sequence. Therefore, we propose that KOPS act solely as a loading site for FtsK, resulting in a unidirectionally oriented hexameric motor upon DNA.