为了阻止肿瘤生长蔓延,科学家们不断从各个途径不懈努力。美国科学促进会、英国《自然》杂志网站近日报道,美国达那·法博癌症研究所一个国际联合研究小组研制了一种分子,能让控制癌症的基因指令失效,从根本上抑制了癌症肿瘤的生长。
癌症基因研究最新进展:
PLoS One:可阻断癌症基因的小分子化合物
Gene & Development:可破坏肿瘤抑制基因的小RNA
Nature:细胞PTEN基因缺失会促进肿瘤生长
Nature Genetics :多种基因能够延缓衰老并抑制肿瘤
PNAS:基因甲基化可预测癌症
生物谷近期肿瘤会议推荐:
第一届肿瘤基础和转化医学国际研讨会.上海.10.12-15
新研究演示了一种蛋白质能向癌症基因发出“停止”和“开始”命令,这种蛋白就是表观基因“阅读”蛋白,也正是今后癌症治疗所瞄准的目标。
最近几年,控制癌症基因行为的研究有了很大发展,用控制基因开关的方法治疗癌症效果明显。论文主要作者、达那·法博癌症研究所詹姆斯·布雷德纳说,如果能关掉一个癌细胞的生长基因,细胞就会死亡。相反,如果打开一个正常组织基因,会让癌细胞变成正常的组织细胞。
他们研究的是一种罕见却极具侵袭性的癌症,即儿童与青年睾丸核蛋白中线癌(NMC),这是一种完全由基因特征来定义的疾病——BRD4-NUT基因易位。这种癌症很顽固,常在胸部、头、颈等沿着身体竖直中线部位发生,临床中尚无有效治疗方法。化疗只在短期内有效,最终无法阻止肿瘤蔓延。
NMC癌症是由染色体“换位”引起,两个来自不同染色体的基因连接在一起,这种异常的合并蛋白称为BRD4-NUT。
细胞中的基因指令就像是一种“书签”,染色质基板上的表观基因为“书写”蛋白,另一组表观基因好比橡皮擦,称为“抹擦”蛋白,能清除书签。而第三种表观基因蛋白,是一种能“阅读”指令“书签”的蛋白,从而控制基因开关,这正是研究人员瞄准的目标。
有科学文献上指出,某些镇定类的药物如安定(Valium)、阿普唑仓(Xanax)和络艾塞半(Ativan)等,能降低BRD4的效力。以此为线索,布雷德纳和另一位研究者齐军(音译)开发出一系列分子,并观察它们能否抑制BRD4-NUT基因中的“阅读”蛋白。
结果,有一种组合分子做到了这一点,研究人员将其命名为JQ1。这种组装分子是一套组装起来的“表观基因组”,能影响细胞的多层机制,从而控制基因行为。它兼具两种功能:一是锁住NMC癌细胞中的异常蛋白,二是让它们停止分化复制,“忘记”自己癌细胞的身份,逐渐恢复成正常细胞的样子。
他们从病人身上移植了NMC癌细胞到实验室小鼠身上,并给一些小鼠使用了JQ1分子。布雷德纳说,效果非常明显,所有接受了JQ1分子治疗的小鼠都活了下来,而没用JQ1的都死了。
目前,齐军及其团队正在扭转分子形状,以发挥其最大功效。布雷德纳还指出,由于能传送选择性分子给致癌蛋白,让它们停止癌症程序,这就把副作用降到了最低。开发JQ1或此类分子药物,可能会产生第一个专为NMC病人设计的个体化治疗,也将为抗癌治疗带来一种新方法。(生物谷Bioon.com)
生物谷推荐英文摘要:
Nature doi:10.1038/nature09504
Selective inhibition of BET bromodomains
Panagis Filippakopoulos1,10, Jun Qi2,10, Sarah Picaud1,10, Yao Shen3, William B. Smith2, Oleg Fedorov1, Elizabeth M. Morse2, Tracey Keates1, Tyler T. Hickman4, Ildiko Felletar1, Martin Philpott1, Shonagh Munro5, Michael R. McKeown2,6, Yuchuan Wang7, Amanda L. Christie8, Nathan West2, Michael J. Cameron4, Brian Schwartz4, Tom D. Heightman1, Nicholas La Thangue5, Christopher A. French4, Olaf Wiest3, Andrew L. Kung8,9, Stefan Knapp1,5 & James E. Bradner2,6
1Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, UK
2Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, Massachusetts 02115, USA
3Walther Cancer Research Center and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
4Department of Pathology, Brigham & Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, Massachusetts 02115, USA
5Department of Clinical Pharmacology, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, UK
6Department of Medicine, Harvard Medical School, 25 Shattuck Street, Boston, Massachusetts 02115, USA
7Department of Imaging, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, Massachusetts 02115, USA
8Lurie Family Imaging Center, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, Massachusetts 02115, USA
9Department of Pediatric Oncology, Dana-Farber Cancer Institute and Children’s Hospital, Boston, Harvard Medical School, 44 Binney Street, Boston, Massachusetts 02115, USA
Epigenetic proteins are intently pursued targets in ligand discovery. So far, successful efforts have been limited to chromatin modifying enzymes, or so-called epigenetic ‘writers’ and ‘erasers’. Potent inhibitors of histone binding modules have not yet been described. Here we report a cell-permeable small molecule (JQ1) that binds competitively to acetyl-lysine recognition motifs, or bromodomains. High potency and specificity towards a subset of human bromodomains is explained by co-crystal structures with bromodomain and extra-terminal (BET) family member BRD4, revealing excellent shape complementarity with the acetyl-lysine binding cavity. Recurrent translocation of BRD4 is observed in a genetically-defined, incurable subtype of human squamous carcinoma. Competitive binding by JQ1 displaces the BRD4 fusion oncoprotein from chromatin, prompting squamous differentiation and specific antiproliferative effects in BRD4-dependent cell lines and patient-derived xenograft models. These data establish proof-of-concept for targeting protein–protein interactions of epigenetic ‘readers’, and provide a versatile chemical scaffold for the development of chemical probes more broadly throughout the bromodomain family.