日前,美国科学院院刊(PNAS)发表了上海交通大学、武汉大学与美国麻省理工学院共同合作,以王连荣教授为第一作者、陈实教授和彼得·帝丹教授为共同通讯作者的一篇论文:“DNA磷硫酰化修饰在细菌基因组中广泛分布且量化存在”。这是DNA骨架上硫修饰研究领域又一个新的重大进展,也是邓子新院士团队与彼得·帝丹教授合作报道了 DNA骨架上硫修饰化学本质后持续合作的新成果。
该论文集高敏检测与精细量化于一体,从飞摩尔水平 (10-12 摩尔) 对 16 种不同序列的磷硫酰化 DNA 双核苷酸及其在染色体上的修饰频率进行同步鉴定,实现了硫修饰DNA快速、高效、高通量、可定量的化学检测。在此基础上,从栖息于多样化生态环境的多种代表性微生物中发现了新型硫修饰DNA上前所未见的修饰方式包括 d(GPST)、d(CPSA)、 d(TPSA),、d(APSA) 和 d(CPSC),阐明了 DNA 硫修饰在从土壤微生物到海洋微生物,从植物致病菌到人类病原菌,从好氧菌到厌氧菌,甚至在最小可自主生长的微生物之一的C. Pelagibacter ubique HTCC1002上表现出的广泛多样性,揭示出硫修饰是自然微生物DNA 骨架上广泛存在又非常独特的生理修饰。
另外,此研究还首次将 DNA 硫修饰研究扩展到了环境基因组学 (metagenomics),在马尾藻海域、俄勒冈海岸水域的海洋环境中发现了 dnd 基因簇以及多种序列的 DNA硫修饰包括 d(GPSA),d(GPSG), d(GPST) 和 d(CPSC);同时发现硫修饰微生物的分布与特定的海洋区域、海洋深度相关,例如,d(GPSG) 在马尾藻海多存在于深达 200 米的深层海域,而 d(CPSC) 则存在于各个水层。进化树分析发现 dnd 基因的传播符合基因横向转移的特征,为今后研究 dnd 基因簇的进化及其在不同微生物间的物质交流和生理功能奠定了新的基础。
研究还通过第二代测序技术鉴定了数个弧菌的部分基因组,以及这些基因组信息与DNA骨架硫修饰之间的关系,同时发现染色体上的DNA 硫修饰受到严谨的调控,其数量化分布的频率符合限制修饰系统的特征,佐证DNA硫修饰与某种新型的限制系统相关联。此外,研究方法还可以方便地延伸应用到砷基生命的精细化学结构鉴定中, 如砷基生命的化学结构确认与磷硫酰化修饰不同,砷取代将被可能成为继DNA硫修饰之后第二例DNA骨架上的生理修饰。
该领域近期的系统性进展已将DNA 硫修饰的研究推进到一个新的发展阶段。最近,中国团队已应邀为英文专著《DNA replication》系统撰写“Phosphorothioation: an unusual post-replicative modification on the DNA backbone” 一章。(生物谷Bioon.com)
生物谷推荐原文出处:
PNAS doi: 10.1073/pnas.1017261108
DNA phosphorothioation is widespread and quantized in bacterial genomes
Lianrong Wanga,b,c, Shi Chenb,c,1, Kevin L. Vergind, Stephen J. Giovannonid, Simon W. Chana, Michael S. DeMotta, Koli Taghizadehe, Otto X. Corderof, Michael Cutlerf, Sonia Timberlakea, Eric J. Alma,f, Martin F. Polzf, Jarone Pinhassig, Zixin Dengb,c, and Peter C. Dedona,e,1
Abstract
Phosphorothioate (PT) modification of DNA, with sulfur replacing a nonbridging phosphate oxygen, was recently discovered as a product of the dnd genes found in bacteria and archaea. Given our limited understanding of the biological function of PT modifications, including sequence context, genomic frequencies, and relationships to the diversity of dnd gene clusters, we undertook a quantitative study of PT modifications in prokaryotic genomes using a liquid chromatography-coupled tandem quadrupole mass spectrometry approach. The results revealed a diversity of unique PT sequence contexts and three discrete genomic frequencies in a wide range of bacteria. Metagenomic analyses of PT modifications revealed unique ecological distributions, and a phylogenetic comparison of dnd genes and PT sequence contexts strongly supports the horizontal transfer of dnd genes. These results are consistent with the involvement of PT modifications in a type of restriction-modification system with wide distribution in prokaryotes.