据美国物理学家组织网8月18日报道,新加坡的研究人员日前培育出一种经过基因修改的大肠杆菌,这种基因工程菌能够识别并通过“自爆”的方式杀灭对人体有害的绿脓杆菌。相关论文8月16日在线发表在《分子系统生物学》(Molecular Systems Biology )杂志上。
绿脓杆菌是一种常见细菌,一般寄生在消化道或呼吸系统,具有较强的耐药性,近年来已成为医院内感染的主要细菌,有研究称10%的院内感染都与其相关,如果被感染者抵抗力较弱甚至会产生致命后果。传统疗法一般是使用大量的抗生素,但没有杀灭致病菌却殃及有益细菌的事情经常发生。
为了解决这一问题,新加坡南洋理工大学的科学家阙路宝(Chueh Loo Poh)和马修·沃克·张(Matthew Wook Chang)对大肠杆菌的DNA(脱氧核糖核酸)进行了修改,使其能够探测到绿脓杆菌与同类进行交流时所释放出的一种独特分子信号LasR。这种分子信号的出现意味着有大量绿脓杆菌的聚集。此时,经过修改的大肠杆菌就如同一颗“生物感应炸弹”一样会发生自爆并释放出大量的绿脓菌素。这种物质对绿脓杆菌具有毒性,因而起到将其杀灭的作用。实验显示,当这两种细菌处于单独的环境中时,经过人工修改的大肠杆菌能杀灭99%的绿脓杆菌。
研究人员称,该研究的一个重要意义是,为解决新型抗菌药物匮乏的局面带来了曙光。由于抗生素的滥用,细菌的耐药性不断增强,原先的抗菌药物已经越来越无法起到杀灭作用。但新药研发周期较长,对抗菌药物而言,在过去10年中真正投放到市场上的只有两种。这种青黄不接的局面让不少人深感担忧。
虽然这种基因工程菌在实验中表现良好,但仍然存有缺憾。研究人员称,目前这种经过修改的大肠杆菌还无法主动寻找目标,在自爆前它们只能守株待兔地坐等致病菌路过。他们希望能找到其他类似的细菌来替代大肠杆菌,如果能实现对目标的主动追踪,这种方法的杀灭率极有可能达到100%。
下一步,研究人员将进行小鼠实验以测试这种疗法的有效性,并确定这种疗法对哺乳动物是否有副作用。(生物谷 Bioon.com)
doi:10.1038/msb.2011.55
PMC:
PMID:
Engineering microbes to sense and eradicate Pseudomonas aeruginosa, a human pathogen
Nazanin Saeidi, Choon Kit Wong, Tat-Ming Lo, Hung Xuan Nguyen, Hua Ling, Susanna Su Jan Leong, Chueh Loo Poh, Matthew Wook Chang
Synthetic biology aims to systematically design and construct novel biological systems that address energy, environment, and health issues. Herein, we describe the development of a synthetic genetic system, which comprises quorum sensing, killing, and lysing devices, that enables Escherichia coli to sense and kill a pathogenic Pseudomonas aeruginosa strain through the production and release of pyocin. The sensing, killing, and lysing devices were characterized to elucidate their detection, antimicrobial and pyocin release functionalities, which subsequently aided in the construction of the final system and the verification of its designed behavior. We demonstrated that our engineered E. coli sensed and killed planktonic P. aeruginosa, evidenced by 99% reduction in the viable cells. Moreover, we showed that our engineered E. coli inhibited the formation of P. aeruginosa biofilm by close to 90%, leading to much sparser and thinner biofilm matrices. These results suggest that E. coli carrying our synthetic genetic system may provide a novel synthetic biology-driven antimicrobial strategy that could potentially be applied to fighting P. aeruginosa and other infectious pathogens.