脊髓性肌萎缩症(Spinal Muscular Atrophy 缩写:SMA)系指遗传性的神经性肌肉疾病,是婴幼儿期常见的致死性常染色体隐性遗传病之一。SMA病人的运动神经元生存蛋白基因之一SMN1发生丢失,而SMN2基因完好无损。然而,SMN2基因所表达的pre-mRNA的7号外显子(exon7)剪接效率低下,导致无功能蛋白质生成。因此,提升7号外显子的剪接效率成为目前临床上治疗该遗传疾病的主要策略。3月9日刊登在《细胞》子刊《分子细胞》上的封面论文报道了由入驻武汉东湖高新技术开发区的武汉生命之美科技有限公司Chief Scientist张翼博士与武汉大学讲座教授、美国加州大学圣地亚哥分校教授付向东博士联手带领的武汉大学团队在提升7号外显子剪接效率方面的创新性研究成果。该成果被特选为该刊的封面文章。研究成果上月在线发表后即入选Faculty of 1000 Biology(生物科学评价库)点评。
张翼博士和付向东博士团队采用RNA干扰技术从人类基因组所编码的340个潜在RNA结合蛋白中筛选出一组抑制7号外显子剪接的蛋白质,其中包括核基质因子SAF-A。该蛋白又名hnRNP U,具有DNA和RNA双重结合功能,被发现在X-染色体失活,DNA损伤修复,生物钟调控,以及干细胞调控中发挥功能。该团队发现降低hnRNP U表达可以大幅提升SMN2基因7号外显子的剪接效率,有望为脊髓性肌萎缩症的治疗提供新靶点。
为了解析hnRNP U的作用机制,张博士和付博士团队使用转录组高通量测序方法(RNA-seq)和可变剪接调控数据挖掘,发现该蛋白调控多个基因的可变剪接。该团队采用高端的CLIP-seq(紫外交联免疫共沉淀-高通量测序)技术,解析出该蛋白在人类宫颈癌细胞转录组里的结合位置(他们曾用该技术成功解析了致癌蛋白PTB的结合位置,获评"2010年中国十大科技进展"新闻)。深度数据分析揭示出该蛋白调控可变剪接的机制非常独特,是通过与小核RNA(snRNA)结合,而非与pre-mRNA的结合。该团队证明该蛋白不但影响U2小核RNA-蛋白质复合体(U2 snRNP)的成熟,同时调控该复合体成熟工厂"卡哈尔小体"(Cajal body)的形态。该研究成果为从全基因组层面认识hnRNP U介导的基因表达调控及其生命学功能提供了大量数据和新视角。预计会大大提升该蛋白所介导的基因调控在遗传疾病、干细胞、发育、生物钟以及DNA损伤修复等重要生物学领域的关注度,并推动其从基础研究迈向实际应用的步伐。(生物谷Bioon.com)
doi:10.1172/JCI58789
PMC:
PMID:
Nuclear Matrix Factor hnRNP U/SAF-A Exerts a Global Control of Alternative Splicing by Regulating U2 snRNP Maturation
Rui Xiao, Peng Tang, Bo Yang, Jie Huang, Yu Zhou, Changwei Shao, Hairi Li, Hui Sun, Yi Zhang, Xiang-Dong Fu
The nuclear matrix-associated hnRNP U/SAF-A protein has been implicated in diverse pathways from transcriptional regulation to telomere length control to X inactivation, but the precise mechanism underlying each of these processes has remained elusive. Here, we report hnRNP U as a regulator of SMN2 splicing from a custom RNAi screen. Genome-wide analysis by CLIP-seq reveals that hnRNP U binds virtually to all classes of regulatory noncoding RNAs, including all snRNAs required for splicing of both major and minor classes of introns, leading to the discovery that hnRNP U regulates U2 snRNP maturation and Cajal body morphology in the nucleus. Global analysis of hnRNP U-dependent splicing by RNA-seq coupled with bioinformatic analysis of associated splicing signals suggests a general rule for splice site selection through modulating the core splicing machinery. These findings exemplify hnRNP U/SAF-A as a potent regulator of nuclear ribonucleoprotein particles in diverse gene expression pathways.