血液凝块的是我们身体中那些令人难以置信的复杂和重要过程之一,我们很少去思考血液凝块是如何发生的以及在什么时候会发生。如果你的血液不凝固,你砍伤自己的话你可能会流血过多死亡,如果你的血液凝块的太多,你可能会心脏病发作或中风。卡尔加里大学Hans Vogel教授一直从事有关凝血方面的研究,他最新研究发表在《美国化学学会杂志》,该研究将有助于我们更好地理解凝血过程。
Vogel和他的研究生Hao Huang能够确定血小板上蛋白分子的三维结构和穿过细胞膜向外延伸的受体。该受体蛋白对血小板以及直接控制血液凝块的形成很重要。其他科学家想要描绘出蛋白结构,但都没成功,Huang和Vogel却做到了。
科学学院生物科学系Vogel说:这项研究的目标是在分子水平上了解血凝块的发生过程。最终长远目标是进行干预这一过程,尽管干预这样一个微妙过程需非常小心。通常情况下,这些分子结构对制药公司很有用,他们需要以此结构为出发点开发新的药物。
Vogel的实验室更大的目标是要弄清楚我们的身体如何响应外来侵略的细菌,特别是那些抗生素无法治疗的超级病菌。Vogel说:“你真的不希望血凝块启动感染反应,所以一旦血小板到达感染部位,它会释放各种蛋白质,然后吸引抗菌的所有有利因素。血小板与白血细胞一起共同“策划”一个非常重要的抗菌反应。
Vogel的下一步研究是尝试更深入了解这种抗菌反应。沃格尔说。我一直这样努力研究已长达30年,如果你看一下你的职业生涯,你取得的许多渐进的进步会共同构建成一个巨大的成功。Vogel在这一领域的研究由艾伯塔创新医疗健康解决计划和加拿大卫生研究院的资助。(生物谷:Bioon)
doi:10.1021/ja2111306
PMC:
PMID:
Structural Basis for the Activation of Platelet Integrin αIIbβ3 by Calcium- and Integrin-Binding Protein 1
Hao Huang, Hans J. Vogel.
Calcium and integrin binding protein 1 (CIB1) is a specific binding partner for the cytoplasmic domain of the αIIb subunit of the highly abundant platelet integrin αIIbβ3. This protein has been suggested to be involved in the regulation of the activation of αIIbβ3, a process leading to platelet aggregation and blood coagulation. In this work, the solution structure of the deuterated Ca2+-CIB1 protein complexed with an αIIb peptide was first determined through modern RDC-based NMR methods. Next, we generated a complex structure for CIB1 and the αIIb domain (Ca2+-CIB1/αIIb) using the program Haddock, which is based on experimental restraints obtained for the protein–peptide interface from cross-saturation NMR experiments. In this data-driven complex structure, the N-terminal α-helix of the cytoplasmic domain of αIIb is buried in the hydrophobic pocket of the C-lobe of Ca2+-CIB1. The C-terminal acidic tail of αIIb remains unstructured and likely interacts with several positively charged residues in the N-lobe of Ca2+-CIB1. A potential molecular mechanism for the CIB1-mediated activation of the platelet integrin could be proposed on the basis of the model structure of this protein complex. Another feature of this work is that, in the NMR cross-saturation experiments, we applied the selective radio frequency irradiation to the smaller binding partner (the αIIb peptide), and successfully detected the binding interface on the larger binding partner Ca2+-CIB1 through its selectively protonated methyl groups. This ‘reverse’ methodology has a broad potential to be employed to many other complexes where synthetic peptides and a suitably isotope-labeled medium- to large-sized protein are used to study protein–protein interactions.